Your browser doesn't support javascript.
loading
Sustainable-Green Synthesis of Silver Nanoparticles Using Aqueous Hyssopus officinalis and Calendula officinalis Extracts and Their Antioxidant and Antibacterial Activities.
Balciunaitiene, Aiste; Puzeryte, Viktorija; Radenkovs, Vitalijs; Krasnova, Inta; Memvanga, Patrick B; Viskelis, Pranas; Streimikyte, Paulina; Viskelis, Jonas.
Afiliação
  • Balciunaitiene A; Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Kaunas, Lithuania.
  • Puzeryte V; Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Kaunas, Lithuania.
  • Radenkovs V; Processing and Biochemistry Department, Institute of Horticulture, LV-3701 Dobele, Latvia.
  • Krasnova I; Research Laboratory of Biotechnology, Division of Smart Technologies, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia.
  • Memvanga PB; Processing and Biochemistry Department, Institute of Horticulture, LV-3701 Dobele, Latvia.
  • Viskelis P; Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, B.P. 212, Kinshasa 012, Congo.
  • Streimikyte P; Department of Pharmacy, Faculty of Medecine and Pharmacy, University of Kisangani, B.P. 212, Kisangani 012, Congo.
  • Viskelis J; Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu B.P. 570, Congo.
Molecules ; 27(22)2022 Nov 09.
Article em En | MEDLINE | ID: mdl-36431804
ABSTRACT
Silver nanoparticles (AgNPs) biosynthesized using aqueous medical plant extracts as reducing and capping agents show multiple applicability for bacterial problems. The aim of this study was to expand the boundaries on AgNPs using a novel, low-toxicity, and cost-effective alternative and green approach to the biosynthesis of metallic NPs using Calendula officinalis (Calendula) and Hyssopus officinalis (Hyssopus) aqueous extracts. The formation of AgNPs was confirmed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS) techniques. The effectiveness of biosynthesized AgNPs in quenching free radicals and inhibiting the growth of Gram-positive and Gram-negative microorganisms was supported by in vitro antioxidant activity assay methods and using the Kirby-Bauer disk diffusion susceptibility test, respectively. The elucidated antimicrobial and antioxidative activities of medical plant extracts were compared with data from the engineered biosynthetic AgNPs. The antimicrobial effect of engineered AgNPs against selected test cultures was found to be substantially stronger than for plant extracts used for their synthesis. The analysis of AgNPs by TEM revealed the presence of spherical-shaped nano-objects. The size distribution of AgNPs was found to be plant-type-dependent. The smaller AgNPs were obtained with Hyssopus extract (with a size range of 16.8 ± 5.8 nm compared to 35.7 ± 4.8 nm from Calendula AgNPs). The AgNPs' presumably inherited biological functions of Hyssopus and Calendula medical plants can provide a platform to combat pathogenic bacteria in the era of multi-drug resistance.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Calendula / Nanopartículas Metálicas Idioma: En Revista: Molecules Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Calendula / Nanopartículas Metálicas Idioma: En Revista: Molecules Ano de publicação: 2022 Tipo de documento: Article