Your browser doesn't support javascript.
loading
Versatile and efficient genome editing with Neisseria cinerea Cas9.
Liu, Zhiquan; Chen, Siyu; Xie, Wanhua; Yu, Hao; Lai, Liangxue; Li, Zhanjun.
Afiliação
  • Liu Z; Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062, China.
  • Chen S; Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062, China.
  • Xie W; The Precise Medicine Center, Shenyang Medical College, Shenyang, 110000, China.
  • Yu H; Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062, China.
  • Lai L; Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062, China. lai_liangxue@gibh.ac.cn.
  • Li Z; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China. lai_li
Commun Biol ; 5(1): 1296, 2022 11 26.
Article em En | MEDLINE | ID: mdl-36435853
ABSTRACT
The CRISPR/Cas9 system is a versatile genome editing platform in biotechnology and therapeutics. However, the requirement of protospacer adjacent motifs (PAMs) limits the genome targeting scope. To expand this repertoire, we revisited and engineered a compact Cas9 orthologue derived from Neisseria cinerea (NcCas9) for efficient genome editing in mammal cells. We demonstrated that NcCas9 generates genome editing at target sites with N4GYAT (Y = T/C) PAM which cannot be recognized by existing Cas9s. By optimizing the NcCas9 architecture and its spacer length, editing efficacy of NcCas9 was further improved in human cells. In addition, the NcCas9-derived Base editors can efficiently generate base conversions. Six anti-CRISPR (Acr) proteins were identified as off-switches for NcCas9. Moreover, NcCas9 successfully generated efficient editing of mouse embryos by microinjection of NcCas9 mRNA and the corresponding sgRNA. Thus, the NcCas9 holds the potential to broaden the CRISPR/Cas9 toolsets for efficient gene modifications and therapeutic applications.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neisseria cinerea / Edição de Genes Limite: Animals / Humans Idioma: En Revista: Commun Biol Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neisseria cinerea / Edição de Genes Limite: Animals / Humans Idioma: En Revista: Commun Biol Ano de publicação: 2022 Tipo de documento: Article