Your browser doesn't support javascript.
loading
OSA-linear dextrin enhances the compactness of pea protein isolate nanoparticles: Increase of high internal phase emulsions stability.
Li, Xiao-Long; Liu, Wen-Jie; Xu, Bao-Cai; Zhang, Bao; Wang, Wu; Su, Dong-Lin.
Afiliação
  • Li XL; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.
  • Liu WJ; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.
  • Xu BC; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.
  • Zhang B; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China. Electronic address: baoz@hfut.ed
  • Wang W; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.
  • Su DL; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, PR China. Electronic address: sdl791228@163.com.
Food Chem ; 404(Pt A): 134590, 2023 Mar 15.
Article em En | MEDLINE | ID: mdl-36444015
ABSTRACT
The pea protein isolate nanoparticles/octenyl succinic anhydride linear dextrin (PPINs/OSA-LD) composite particles were fabricated by heating at acidic condition. Heating treatment not only made OSA-LD dissolve, but also promoted the hydrophobic interactions between PPINs and OSA-LD. With the increase of OSA-LD content, the average diameter of composite particles decreased due to the avoidance of hydrophobic aggregation between PPINs during heating, and the composite particles became more compact and regular. The high internal phase emulsions (HIPEs) stabilized by composite particles exhibited smaller droplet size, higher viscosity and modulus attributing to the formation of denser interfacial layer. The results of low field nuclear magnetic resonance proved that the HIPEs stabilized by composite particles showed more uniform distribution of water and oil. This work provided a facile method to fabricate composite particles, which had excellent capacity to stabilize the HIPEs.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanopartículas / Proteínas de Ervilha Idioma: En Revista: Food Chem Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanopartículas / Proteínas de Ervilha Idioma: En Revista: Food Chem Ano de publicação: 2023 Tipo de documento: Article