Preoperative CT features to predict risk stratification of non-muscle invasive bladder cancer.
Abdom Radiol (NY)
; 48(2): 659-668, 2023 02.
Article
em En
| MEDLINE
| ID: mdl-36454277
PURPOSE: To investigate whether preoperative CT features can be used to predict risk stratification of non-muscle invasive bladder cancer (NMIBC). METHODS: The 168 patients with pathologically confirmed NMIBC who underwent preoperative CT urography were retrospectively analyzed and were divided into training (n = 117) and testing (n = 51) sets. According to the European Association of Urology Guidelines, patients were classified into low-risk (n = 50), medium-risk (n = 23), and high-risk (n = 95) groups. A random over-sample was performed to handle the offset caused by the unbalanced groups. We measured some CT features that may help stratify which for modeling were determined using an F-test-based feature selection with a tenfold cross-validation procedure, and the Gaussian Naive Bayes model was trained on the entire training set. In the testing set, the performance of the model was evaluated. RESULTS: The selected CT features were the maximum and the minimum diameter of the largest tumor, whether the largest tumor is located at the trigone, and tumor number. In the testing set, the model reached a macro- and micro- AUC of 0.783 and 0.745 with an accuracy of 0.529. As for the one-vs-rest problem, the model was most effective in identifying low-risk individuals, with an AUC, accuracy, sensitivity, and specificity of 0.870, 0.647, 1.000, and 0.438, respectively; the medium-risk group reached 0.814, 0.882, 0.250, and 0.936, respectively; the identification of the high-risk group was harder, going 0.665, 0.529, 0.250, and 0.870, respectively. CONCLUSION: It is feasible to predict the risk stratification of NMIBC using preoperative CT features.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Neoplasias da Bexiga Urinária
/
Neoplasias não Músculo Invasivas da Bexiga
Tipo de estudo:
Etiology_studies
/
Prognostic_studies
/
Risk_factors_studies
Limite:
Humans
Idioma:
En
Revista:
Abdom Radiol (NY)
Ano de publicação:
2023
Tipo de documento:
Article