Your browser doesn't support javascript.
loading
Construction of pH-responsive polydopamine coated magnetic layered hydroxide nanostructure for intracellular drug delivery.
Liu, Zhaoyun; Wang, Xi; Chen, Xiaoxu; Cui, Liu; Li, Ziqi; Bai, Ziwei; Lin, Kui; Yang, Jian; Tian, Fei.
Afiliação
  • Liu Z; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
  • Wang X; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China.
  • Chen X; Department of Pharmacy, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, PR China.
  • Cui L; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
  • Li Z; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
  • Bai Z; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
  • Lin K; Analytical Instrumentation Centre, Tianjin University, Tianjin 300072, PR China.
  • Yang J; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China. Electronic address: yang.j2017@tjutcm.edu.cn.
  • Tian F; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China. Electronic address: tianfei.loui
Eur J Pharm Biopharm ; 182: 12-20, 2023 Jan.
Article em En | MEDLINE | ID: mdl-36462716
ABSTRACT
In recent years, using magnetic nanocomposites for controlled release of drugs and target-specific drug delivery has great potential in exploring a new method for cancer chemotherapy. Nevertheless, the low loading rate of insoluble drugs greatly restricts their efficacy and clinical application. Here, an efficient magnetic nanostructure combining Fe3O4 nanoparticles and layered double hydroxide (LDH) was developed and used for tumor cell inhibition. LDH was first deposited on Fe3O4 nanoparticles (Fe3O4@LDH), curcumin (Cur) was then loaded and polydopamine (PDA) eventually formed a PDA-coating on Fe3O4@Cur-LDH via self-polymerization. The Fe3O4@Cur-LDH/PDA nanostructure showed a suitable nano-meter size, excellent magnetic property, and high drug loading rate (up to 38 %). In vitro release results implied that Fe3O4@Cur-LDH/PDA nanostructure had good pH-responsive performance and excellent controlled-release behaviors due to the introduction of PDA. The cellular experiments demonstrated that Fe3O4@Cur-LDH/PDA nanostructure had good biocompatibility. In addition, Fe3O4@Cur-LDH/PDA entered into the cells mainly through endocytosis and had excellent inhibition on HepG2 cell viability in a concentration-dependent manner. Therefore, Fe3O4@Cur-LDH/PDA nanostructure has a prospective application in cancer therapy as a controlled drug delivery system.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Curcumina / Nanocompostos Idioma: En Revista: Eur J Pharm Biopharm Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Curcumina / Nanocompostos Idioma: En Revista: Eur J Pharm Biopharm Ano de publicação: 2023 Tipo de documento: Article