Your browser doesn't support javascript.
loading
Comprehensive characterization of putative genetic influences on plasma metabolome in a pediatric cohort.
Lee, In-Hee; Smith, Matthew Ryan; Yazdani, Azam; Sandhu, Sumiti; Walker, Douglas I; Mandl, Kenneth D; Jones, Dean P; Kong, Sek Won.
Afiliação
  • Lee IH; Computational Health Informatics Program, Boston Children's Hospital, 401 Park Drive, Boston, MA, 02215, USA.
  • Smith MR; Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA, 30602, USA.
  • Yazdani A; Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, 30033, USA.
  • Sandhu S; Center of Perioperative Genetics and Genomics, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
  • Walker DI; Computational Health Informatics Program, Boston Children's Hospital, 401 Park Drive, Boston, MA, 02215, USA.
  • Mandl KD; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
  • Jones DP; Computational Health Informatics Program, Boston Children's Hospital, 401 Park Drive, Boston, MA, 02215, USA.
  • Kong SW; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA.
Hum Genomics ; 16(1): 67, 2022 12 08.
Article em En | MEDLINE | ID: mdl-36482414
BACKGROUND: The human exposome is composed of diverse metabolites and small chemical compounds originated from endogenous and exogenous sources, respectively. Genetic and environmental factors influence metabolite levels, while the extent of genetic contributions across metabolic pathways is not yet known. Untargeted profiling of human metabolome using high-resolution mass spectrometry (HRMS) combined with genome-wide genotyping allows comprehensive identification of genetically influenced metabolites. As such previous studies of adults discovered and replicated genotype-metabotype associations. However, these associations have not been characterized in children. RESULTS: We conducted the largest genome by metabolome-wide association study to date of children (N = 441) using 619,688 common genetic variants and 14,342 features measured by HRMS. Narrow-sense heritability (h2) estimates of plasma metabolite concentrations using genomic relatedness matrix restricted maximum likelihood (GREML) method showed a bimodal distribution with high h2 (> 0.8) for 15.9% of features and low h2 (< 0.2) for most of features (62.0%). The features with high h2 were enriched for amino acid and nucleic acid metabolism, while carbohydrate and lipid concentrations showed low h2. For each feature, a metabolite quantitative trait loci (mQTL) analysis was performed to identify genetic variants that were potentially associated with plasma levels. Fifty-four associations among 29 features and 43 genetic variants were identified at a genome-wide significance threshold p < 3.5 × 10-12 (= 5 × 10-8/14,342 features). Previously reported associations such as UGT1A1 and bilirubin; PYROXD2 and methyl lysine; and ACADS and butyrylcarnitine were successfully replicated in our pediatric cohort. We found potential candidates for novel associations including CSMD1 and a monostearyl alcohol triglyceride (m/z 781.7483, retention time (RT) 89.3 s); CALN1 and Tridecanol (m/z 283.2741, RT 27.6). A gene-level enrichment analysis using MAGMA revealed highly interconnected modules for dADP biosynthesis, sterol synthesis, and long-chain fatty acid transport in the gene-feature network. CONCLUSION: Comprehensive profiling of plasma metabolome across age groups combined with genome-wide genotyping revealed a wide range of genetic influence on diverse chemical species and metabolic pathways. The developmental trajectory of a biological system is shaped by gene-environment interaction especially in early life. Therefore, continuous efforts on generating metabolomics data in diverse human tissue types across age groups are required to understand gene-environment interaction toward healthy aging trajectories.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Genômica / Metabolômica Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Child / Humans Idioma: En Revista: Hum Genomics Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Genômica / Metabolômica Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Child / Humans Idioma: En Revista: Hum Genomics Ano de publicação: 2022 Tipo de documento: Article