Your browser doesn't support javascript.
loading
Triazolyl- vs Pyridyl-Functionalized N-Heterocyclic Carbene Complexes: Impact of the Pendant N-Donor Ligand on Intramolecular C-C Bond Formation.
Lee, Betty Y T; Phillips, Andrew D; Hanif, Muhammad; Söhnel, Tilo; Hartinger, Christian G.
Afiliação
  • Lee BYT; School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
  • Phillips AD; School of Chemistry, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland.
  • Hanif M; School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
  • Söhnel T; School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
  • Hartinger CG; School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
ACS Org Inorg Au ; 2(6): 511-524, 2022 Dec 07.
Article em En | MEDLINE | ID: mdl-36510612
ABSTRACT
Organometallic Rh(Cp*) (Cp* = η5-pentamethylcyclopentadienyl) complexes with monodentate N-heterocyclic carbene (NHC) ligands bearing a pendant anthracenyl substituent have been shown to undergo intramolecular C-C coupling reactions. Herein, two bidentate NHC ligands substituted with pyridyl or triazolyl donor groups were prepared along with the corresponding MII/III (M = RuII, OsII, RhIII, IrIII) complexes. While the Rh(Cp*) complex featuring an NHC-triazole bidentate ligand underwent the equivalent reaction as the monodentate Rh(NHC) complex, i.e., it formed a polydentate ligand, the pyridyl-pendant derivative was unequivocally shown to be unreactive. This contrasting behavior was further investigated by density functional theory (DFT) calculations that highlighted significant differences between the two types of Rh(III) complexes with pendant pyridyl or triazolyl N-coordinating groups. Modeling of the reaction pathways suggests that the initial formation of a dicationic Rh(III) species is unfavorable and that the internal ligand transformation proceeds first by dissociation of the coordinated N atom of the pendant group from the Rh center. After the formation of a neutral η4-fulvene ligand via combined proton/single electron transfer, a cycloaddition occurs between the exo-ene bond of fulvene and the 9' and 10' positions on the pendant anthracenyl group. The resulting experimental UV-visible spectrum recorded in methanol of the polydentate triazolyl-based Rh species revealed the loss of the vibronic coupling typically associated with an anthracenyl functional group. Moreover, TD-DFT modeling indicates the presence of an equilibrium process whereby the N-coordination of the pendant triazolyl group to the RhIII center appears to be highly labile. Charge decomposition analysis (CDA) of the DFT-modeled species with the dissociated triazolyl group revealed a pseudo-η3-allylic interaction between the π-type MOs of the transformed anthracenyl group and the RhIII center; thus, the singly attached chelating ligand is classified as having rare nonadenticity.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Org Inorg Au Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Org Inorg Au Ano de publicação: 2022 Tipo de documento: Article