Your browser doesn't support javascript.
loading
Generation and functional characterization of a multigene-modified NK101 cell line exerting diverse mechanisms of antitumor action.
Hwang, Injung; Jin, Hyun Tak; Kang, Moon Cheol; Kim, Tae Yoon; Sung, Young Chul; Kim, Sae Won.
Afiliação
  • Hwang I; SL BiGen, Inc., Research Institute, Incheon, Republic of Korea.
  • Jin HT; Progen. Co., Ltd., Research Institute, Seongnam, Republic of Korea.
  • Kang MC; SL BiGen, Inc., Research Institute, Incheon, Republic of Korea.
  • Kim TY; SL BiGen, Inc., Research Institute, Incheon, Republic of Korea.
  • Sung YC; Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
  • Kim SW; SL BiGen, Inc., Research Institute, Incheon, Republic of Korea.
Oncoimmunology ; 11(1): 2014655, 2022.
Article em En | MEDLINE | ID: mdl-36524207
ABSTRACT
Clonal cell line-based, multigene-modified, off-the-shelf NK cell therapeutics are emerging as the new frontier of adoptive cellular immunotherapy. Here, we utilized a newly established NK cell line, NK101, as a backbone to derive multifaceted killer cells armored with various antitumor modalities through repeated cycles of genetic modification and clonal selection. First, NK101 cells were transduced with a tricistronic lentiviral vector expressing CD7, CD28, and cytosine deaminase (CD). The resulting cell line demonstrated enhanced cytotoxicity against B7+ tumors and exerted bystander killing effects on neighboring tumor cells upon 5-FC treatment. Second, engineered NK101 cells were again transduced with a bicistronic vector expressing membrane-bound interleukin-15 (mbIL-15) and dominant negative TGFß type II receptor (DNTßRII). Ectopic expression of mbIL-15 resulted in further augmentation of lytic activities against all tested target cells by inducing upregulation of multiple activating receptors, while that of DNTßRII allowed the cells to maintain heightened cytotoxicity in the presence of TGFß. Finally, dual-transduced NK101 cells were modified to express chimeric antigen receptors (CARs) targeting either a solid tumor antigen (EpCAM) or a hematologic tumor antigen (FLT3). The final engineered products not only demonstrated antigen-specific killing activities in vitro but also exerted strong tumor-inhibitory effects in preclinical models of metastatic solid tumor and hematologic malignancy. Notably, combined treatment with 5-FC further enhanced antitumor efficacy of engineered NK101 in the solid tumor model. Our results demonstrate successful generation of multigene-modified NK101 cell therapeutics exerting diverse mechanisms of antitumor action - activation receptor-mediated innate killing, antigen-specific killing, and bystander effect-mediated killing.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Células Matadoras Naturais / Citotoxicidade Imunológica Tipo de estudo: Prognostic_studies Idioma: En Revista: Oncoimmunology Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Células Matadoras Naturais / Citotoxicidade Imunológica Tipo de estudo: Prognostic_studies Idioma: En Revista: Oncoimmunology Ano de publicação: 2022 Tipo de documento: Article