Your browser doesn't support javascript.
loading
A Bioengineered Quercetin-Loaded 3D Bio-Polymeric Graft for Tissue Regeneration and Repair.
Dhasmana, Archna; Malik, Sumira; Ranjan, Anuj; Chauhan, Abhishek; Tashkandi, Hanaa M; Haque, Shafiul; Al-Raddadi, Rajaa; Harakeh, Steve; Zengin, Gökhan.
Afiliação
  • Dhasmana A; Himalayan School of Biosciences, Swami Rama Himalayan, Jolly Grant, Dehradun 248140, Uttarakhand, India.
  • Malik S; Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi 834001, Jharkhand, India.
  • Ranjan A; Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia.
  • Chauhan A; Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida 201303, Uttar Pradesh, India.
  • Tashkandi HM; Department of General Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
  • Haque S; Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia.
  • Al-Raddadi R; Community Medicine Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
  • Harakeh S; King Fahd Medical Research Center, and Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
  • Zengin G; Department of Biology, Science Faculty, Selcuk University, Konya 42250, Turkey.
Biomedicines ; 10(12)2022 Dec 07.
Article em En | MEDLINE | ID: mdl-36551913
ABSTRACT
Phytochemicals extracted from plant sources have potential remedial effects to cure a broad range of acute to severe illnesses and ailments. Quercetin is a flavonoid isolated from different dietary sources such as vegetables and fruits, exhibiting strong anti-inflammatory, anti-oxidative and non-toxic effects on the biological system. However, the direct uptake or administration of quercetin results in loss of functionality, poor activity, and reduced shelf-life of the bioactive component. In this regard, to improve the uptake, potential, and efficiency of natural components with prolonged storage in the host's body after administration, numerous polymer drug delivery systems have been created. In the current study, three-dimensional (3D) porous (porosity 92%; pore size 81 µm) bio-polymeric foaming gelatin-alginate (GA) beads were fabricated for the entrapment of quercetin as therapeutic drug molecules-gelatin-alginate-quercetin (GAQ). The GAQ beads showed a significant uptake of quercetin molecules resulting in a reduction of reduced porosity up to 64% and pore size 63 µm with a controlled release profile in the PBS medium, showing ~80% release within 24 h. Subsequently, the GAQ beads showed remarkable antioxidant effects, and 95% anti-inflammatory activities along with remarkable in vitro cell culture growth and the observed proliferation of seeded fibroblast cells. Thus, we can conclude that the consistent release of quercetin showed non-toxic effects on normal cell lines and the bioactive surface of the GAQ beads enhances cell adhesion, proliferation, and differentiation more effectively than control GA polymeric beads and tissue culture plates (TCP). In summary, these findings show that these GAQ beads act as a biocompatible 3D construct with enormous potential in medicinal administration and tissue regeneration for accelerated healing.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Biomedicines Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Biomedicines Ano de publicação: 2022 Tipo de documento: Article