The combination of Astragalus membranaceus and ligustrazine mitigates cerebral ischemia-reperfusion injury via regulating NR2B-ERK/CREB signaling.
Brain Behav
; 13(2): e2867, 2023 02.
Article
em En
| MEDLINE
| ID: mdl-36585899
BACKGROUND AND PURPOSE: Cerebral ischemia-reperfusion (I/R) injury is a major factor underlying the high mortality and morbidity rates in stroke patients. Our previous study found that the combination of Astragalus membranaceus extract and ligustrazine (Ast+Lig) treatment could protect brain tissues against inflammation in rats with thrombolytic cerebral ischemia. Activation of N-methyl-D-aspartate receptors (NMDAR) is implicated in brain damage induced by cerebral I/R injury. METHODS: We used in vivo and in vitro models of cerebral I/R injury for middle cerebral artery occlusion/reperfusion in mice and oxygen-glucose deprivation/reoxygenation in primary rat cerebral cortical neurons to evaluate the protective effects of Ast+Lig on cerebral I/R injury, and whether the protective mechanism was related to the regulation of NMDAR-ERK/CREB signaling. RESULTS: Treatment with Ast+Lig, or MK-801 (an inhibitor of NMDAR) significantly ameliorated neurological deficits, decreased infarct volumes, suppressed neuronal damage and Ca2+ influx, and maintained the mitochondrial membrane potential in vivo and in vitro following cerebral I/R injury based on 2,3,5-triphenyl tetrazolium chloride staining, immunohistochemistry, and immunofluorescent staining. Furthermore, treatment with Ast+Lig evidently prevented the upregulation of NR2B, but not NR2A, in vivo and in vitro following cerebral I/R injury based on western blotting and reverse transcription-quantitative PCR analyses. Moreover, treatment with Ast+Lig significantly increased the phosphorylation of ERK and CREB, as well as increasing their mRNA expression levels in vivo and in vitro following cerebral I/R injury. CONCLUSIONS: The overall results thus suggest that the Ast+Lig combination conferred neuroprotective properties against cerebral I/R injury via regulation of the NR2B-ERK/CREB signaling pathway.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Contexto em Saúde:
6_ODS3_enfermedades_notrasmisibles
Base de dados:
MEDLINE
Assunto principal:
Traumatismo por Reperfusão
/
Isquemia Encefálica
/
Fármacos Neuroprotetores
Tipo de estudo:
Prognostic_studies
Limite:
Animals
Idioma:
En
Revista:
Brain Behav
Ano de publicação:
2023
Tipo de documento:
Article