Your browser doesn't support javascript.
loading
Application of Nanoliposomes Containing Nisin and Crocin in Milk.
Yousefi, Mohammad; Jafari, Seid Mahdi; Ahangari, Hossein; Ehsani, Ali.
Afiliação
  • Yousefi M; Department of Food Science and Technology, Tabriz University of Medical Sciences. Tabriz, Iran. Food and Beverage Safety Research Center, Urmia University of Medical Sciences.
  • Jafari SM; Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
  • Ahangari H; Department of Food Science and Technology & Nutrition Research Center, Tabriz University of Medical Sciences. Tabriz, Iran.
  • Ehsani A; Department of Food Science and Technology & Nutrition Research Center, Tabriz University of Medical Sciences. Tabriz, Iran.
Adv Pharm Bull ; 13(1): 134-142, 2023 Jan.
Article em En | MEDLINE | ID: mdl-36721817
ABSTRACT

Purpose:

This study aimed to investigate the effects of nanoliposomes containing crocin and nisin in milk samples as a food model. Therefore, three formulations were prepared and compared, including (1) milk samples containing free nisin and crocin, (2) samples with nanoliposomes containing nisin and crocin, and (3) nisin and crocin-loaded nanoliposomes coated with chitosan.

Methods:

In order to find the optimum amount of both bioactives within nanoliposomes, analyses of size, polydispersity index (PDI), zeta potential, and encapsulation efficiency were accomplished. Then, the best formulated nanoliposome was evaluated and compared with a solution containing free bioactives and nanoliposomes coated with chitosan using other experiments, including antioxidant and antibacterial activities, viscosity, colorimetric and bacterial growth.

Results:

The best nanoliposomal system based on the factors of size, PDI, zeta potential, and encapsulation efficiency was related for the nanocarrier with 4 mg crocin, 4.5 mg nisin, and 40 mg lecithin. Based on the results obtained, both nanoliposome (a*=5.41) and chitosancoated nanoliposome (a*=5.09) solutions could significantly (P<0.05) reduce the redness of milk induced by free bioactives (a*=12.32). However, viscosity of milk in chitosan-coated nanoliposome solution was found to be higher (3.42 cP) than other formulations (viscosity of samples with free bioactives was 1.65 cP and viscosity of samples containing nanoliposome was 1.71 cP). In addition, chitosan-coated nanoliposomes could inhibit the growth of Listeria monocytogenes stronger than other samples.

Conclusion:

Encapsulation of nisin and crocin in nanoliposomes showed promising results for preserving food safety and quality.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Adv Pharm Bull Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Adv Pharm Bull Ano de publicação: 2023 Tipo de documento: Article