Your browser doesn't support javascript.
loading
SYF2 suppression mitigates neurodegeneration in models of diverse forms of ALS.
Linares, Gabriel R; Li, Yichen; Chang, Wen-Hsuan; Rubin-Sigler, Jasper; Mendonca, Stacee; Hong, Sarah; Eoh, Yunsun; Guo, Wenxuan; Huang, Yi-Hsuan; Chang, Jonathan; Tu, Sharon; Dorjsuren, Nomongo; Santana, Manuel; Hung, Shu-Ting; Yu, Johnny; Perez, Joscany; Chickering, Michael; Cheng, Tze-Yuan; Huang, Chi-Chou; Lee, Shih-Jong James; Deng, Hao-Jen; Bach, Kieu-Tram; Gray, Kamden; Subramanyam, Vishvak; Rosenfeld, Jeffrey; Alworth, Samuel V; Goodarzi, Hani; Ichida, Justin K.
Afiliação
  • Linares GR; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck
  • Li Y; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck
  • Chang WH; AcuraStem Incorporated, Monrovia, CA 91016, USA.
  • Rubin-Sigler J; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck
  • Mendonca S; AcuraStem Incorporated, Monrovia, CA 91016, USA.
  • Hong S; AcuraStem Incorporated, Monrovia, CA 91016, USA.
  • Eoh Y; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck
  • Guo W; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck
  • Huang YH; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck
  • Chang J; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck
  • Tu S; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck
  • Dorjsuren N; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck
  • Santana M; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck
  • Hung ST; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck
  • Yu J; Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA; Department of Urology, University of California, San Francisco, CA 94158, USA; Bakar Computational Health Sciences Institute, University of California, San Francisco, CA 94158, USA.
  • Perez J; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck
  • Chickering M; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck
  • Cheng TY; SVision LLC, Bellevue, WA 98006, USA.
  • Huang CC; SVision LLC, Bellevue, WA 98006, USA.
  • Lee SJ; SVision LLC, Bellevue, WA 98006, USA.
  • Deng HJ; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck
  • Bach KT; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck
  • Gray K; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck
  • Subramanyam V; Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA; Department of Urology, University of California, San Francisco, CA 94158, USA; Bakar Computational Health Sciences Institute, University of California, San Francisco, CA 94158, USA.
  • Rosenfeld J; Department of Neurology, Loma Linda University, Loma Linda, CA 92350, USA.
  • Alworth SV; AcuraStem Incorporated, Monrovia, CA 91016, USA.
  • Goodarzi H; Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA; Department of Urology, University of California, San Francisco, CA 94158, USA; Bakar Computational Health Sciences Institute, University of California, San Francisco, CA 94158, USA.
  • Ichida JK; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck
Cell Stem Cell ; 30(2): 171-187.e14, 2023 02 02.
Article em En | MEDLINE | ID: mdl-36736291
ABSTRACT
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease caused by many diverse genetic etiologies. Although therapeutics that specifically target causal mutations may rescue individual types of ALS, such approaches cannot treat most patients since they have unknown genetic etiology. Thus, there is a critical need for therapeutic strategies that rescue multiple forms of ALS. Here, we combine phenotypic chemical screening on a diverse cohort of ALS patient-derived neurons with bioinformatic analysis of large chemical and genetic perturbational datasets to identify broadly effective genetic targets for ALS. We show that suppressing the gene-encoding, spliceosome-associated factor SYF2 alleviates TDP-43 aggregation and mislocalization, improves TDP-43 activity, and rescues C9ORF72 and causes sporadic ALS neuron survival. Moreover, Syf2 suppression ameliorates neurodegeneration, neuromuscular junction loss, and motor dysfunction in TDP-43 mice. Thus, suppression of spliceosome-associated factors such as SYF2 may be a broadly effective therapeutic approach for ALS.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doenças Neurodegenerativas / Esclerose Lateral Amiotrófica Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Cell Stem Cell Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doenças Neurodegenerativas / Esclerose Lateral Amiotrófica Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Cell Stem Cell Ano de publicação: 2023 Tipo de documento: Article