Your browser doesn't support javascript.
loading
Molecular basis of RanGTP-activated nucleosome assembly with Histones H2A-H2B bound to Importin-9.
Shaffer, Joy M; Jiou, Jenny; Tripathi, Kiran; Olaluwoye, Oladimeji S; Fung, Ho Yee Joyce; Chook, Yuh Min; D'Arcy, Sheena.
Afiliação
  • Shaffer JM; Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, United States, 75080.
  • Jiou J; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States, 75390.
  • Tripathi K; Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, United States, 75080.
  • Olaluwoye OS; Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, United States, 75080.
  • Fung HYJ; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States, 75390.
  • Chook YM; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States, 75390.
  • D'Arcy S; Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, United States, 75080.
bioRxiv ; 2023 Jan 28.
Article em En | MEDLINE | ID: mdl-36747879
ABSTRACT
Padavannil et al. 2019 show that Importin-9 (Imp9) transports Histones H2A-H2B from the cytoplasm to the nucleus using a non-canonical mechanism whereby binding of a GTP-bound Ran GTPase (RanGTP) fails to evict the H2A-H2B cargo. Instead, a stable complex forms, comprised of equimolar RanGTP, Imp9, and H2A-H2B. Unlike the binary Imp9•H2A-H2B complex, this RanGTP•Imp9•H2A-H2B ternary complex can release H2A-H2B to an assembling nucleosome. Here, we define the molecular basis for this RanGTP-activated nucleosome assembly by Imp9. We use hydrogen-deuterium exchange coupled with mass spectrometry and compare the dynamics and interfaces of the RanGTP•Imp9•H2A-H2B ternary complex to those in the Imp9•H2A-H2B or Imp9•RanGTP binary complexes. Our data are consistent with the Imp9•H2A-H2B structure by Padavannil et al. 2019 showing that Imp9 HEAT repeats 4-5 and 18-19 contact H2A-H2B, as well as many homologous importin•RanGTP structures showing that importin HEAT repeats 1 and 3, and the h8 loop, contact RanGTP. We show that Imp9 stabilizes H2A-H2B beyond the direct binding site, similar to other histone chaperones. Importantly, we reveal that binding of RanGTP releases H2A-H2B interaction at Imp9 HEAT repeats 4-5, but not 18-19. This exposes DNA- and histone-binding surfaces of H2A-H2B, thereby facilitating nucleosome assembly. We also reveal that RanGTP has a weaker affinity for Imp9 when H2A-H2B is bound. This may ensure that H2A-H2B is only released in high RanGTP concentrations near chromatin. We delineate the molecular link between the nuclear import of H2A-H2B and its deposition into chromatin by Imp9.

Significance:

Imp9 is the primary importin for shuttling H2A-H2B from the cytoplasm to the nucleus. It employs an unusual mechanism where the binding of RanGTP alone is insufficient to release H2A-H2B. The resulting stable RanGTP•Imp9•H2A-H2B complex gains nucleosome assembly activity as H2A-H2B can be deposited onto an assembling nucleosome. We show that H2A-H2B is allosterically stabilized via interactions with both N- and C-terminal portions of Imp9, reinforcing its chaperone-like behavior. RanGTP binding causes H2A-H2B release from the N-terminal portion of Imp9 only. The newly-exposed H2A-H2B surfaces can interact with DNA or H3-H4 in nucleosome assembly. Imp9 thus plays a multi-faceted role in histone import, storage, and deposition regulated by RanGTP, controlling histone supply in the nucleus and to chromatin.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: BioRxiv Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: BioRxiv Ano de publicação: 2023 Tipo de documento: Article