Your browser doesn't support javascript.
loading
Revealing Corynebacterium glutamicum proteoforms through top-down proteomics.
Melo, Reynaldo Magalhães; de Souza, Jaques Miranda Ferreira; Williams, Thomas Christopher Rhys; Fontes, Wagner; de Sousa, Marcelo Valle; Ricart, Carlos André Ornelas; do Vale, Luis Henrique Ferreira.
Afiliação
  • Melo RM; Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil.
  • de Souza JMF; Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil.
  • Williams TCR; Laboratory of Plant Biochemistry, Department of Botany, Institute of Biology, University of Brasilia, Brasilia, Brazil.
  • Fontes W; Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil.
  • de Sousa MV; Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil.
  • Ricart CAO; Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil.
  • do Vale LHF; Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil. luisvale@unb.br.
Sci Rep ; 13(1): 2602, 2023 02 14.
Article em En | MEDLINE | ID: mdl-36788287
ABSTRACT
Corynebacterium glutamicum is a bacterium widely employed in the industrial production of amino acids as well as a broad range of other biotechnological products. The present study describes the characterization of C. glutamicum proteoforms, and their post-translational modifications (PTMs) employing top-down proteomics. Despite previous evidence of PTMs having roles in the regulation of C. glutamicum metabolism, this is the first top-down proteome analysis of this organism. We identified 1125 proteoforms from 273 proteins, with 60% of proteins presenting at least one mass shift, suggesting the presence of PTMs, including several acetylated, oxidized and formylated proteoforms. Furthermore, proteins relevant to amino acid production, protein secretion, and oxidative stress were identified with mass shifts suggesting the presence of uncharacterized PTMs and proteoforms that may affect biotechnologically relevant processes in this industrial workhorse. For instance, the membrane proteins mepB and SecG were identified as a cleaved and a formylated proteoform, respectively. While in the central metabolism, OdhI was identified as two proteoforms with potential biological relevance a cleaved proteoform and a proteoform with PTMs corresponding to a 70 Da mass shift.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Corynebacterium glutamicum / Espectrometria de Massas em Tandem Idioma: En Revista: Sci Rep Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Corynebacterium glutamicum / Espectrometria de Massas em Tandem Idioma: En Revista: Sci Rep Ano de publicação: 2023 Tipo de documento: Article