Your browser doesn't support javascript.
loading
Twisted bilayer zigzag-graphene nanoribbon junctions with tunable edge states.
Wang, Dongfei; Bao, De-Liang; Zheng, Qi; Wang, Chang-Tian; Wang, Shiyong; Fan, Peng; Mishra, Shantanu; Tao, Lei; Xiao, Yao; Huang, Li; Feng, Xinliang; Müllen, Klaus; Zhang, Yu-Yang; Fasel, Roman; Ruffieux, Pascal; Du, Shixuan; Gao, Hong-Jun.
Afiliação
  • Wang D; Institute of Physics & University of Chinese Academy of Sciences, 100190, Beijing, China.
  • Bao DL; Institute of Physics & University of Chinese Academy of Sciences, 100190, Beijing, China.
  • Zheng Q; Institute of Physics & University of Chinese Academy of Sciences, 100190, Beijing, China.
  • Wang CT; Institute of Physics & University of Chinese Academy of Sciences, 100190, Beijing, China.
  • Wang S; Nanotech@surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland.
  • Fan P; Institute of Physics & University of Chinese Academy of Sciences, 100190, Beijing, China.
  • Mishra S; Nanotech@surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland.
  • Tao L; Institute of Physics & University of Chinese Academy of Sciences, 100190, Beijing, China.
  • Xiao Y; Institute of Physics & University of Chinese Academy of Sciences, 100190, Beijing, China.
  • Huang L; Institute of Physics & University of Chinese Academy of Sciences, 100190, Beijing, China.
  • Feng X; Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany.
  • Müllen K; Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany.
  • Zhang YY; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
  • Fasel R; Institute of Physics & University of Chinese Academy of Sciences, 100190, Beijing, China.
  • Ruffieux P; Nanotech@surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland.
  • Du S; Nanotech@surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland. pascal.ruffieux@empa.ch.
  • Gao HJ; Institute of Physics & University of Chinese Academy of Sciences, 100190, Beijing, China. sxdu@iphy.ac.cn.
Nat Commun ; 14(1): 1018, 2023 Feb 23.
Article em En | MEDLINE | ID: mdl-36823140
ABSTRACT
Stacking two-dimensional layered materials such as graphene and transitional metal dichalcogenides with nonzero interlayer twist angles has recently become attractive because of the emergence of novel physical properties. Stacking of one-dimensional nanomaterials offers the lateral stacking offset as an additional parameter for modulating the resulting material properties. Here, we report that the edge states of twisted bilayer zigzag graphene nanoribbons (TBZGNRs) can be tuned with both the twist angle and the stacking offset. Strong edge state variations in the stacking region are first revealed by density functional theory (DFT) calculations. We construct and characterize twisted bilayer zigzag graphene nanoribbon (TBZGNR) systems on a Au(111) surface using scanning tunneling microscopy. A detailed analysis of three prototypical orthogonal TBZGNR junctions exhibiting different stacking offsets by means of scanning tunneling spectroscopy reveals emergent near-zero-energy states. From a comparison with DFT calculations, we conclude that the emergent edge states originate from the formation of flat bands whose energy and spin degeneracy are highly tunable with the stacking offset. Our work highlights fundamental differences between 2D and 1D twistronics and spurs further investigation of twisted one-dimensional systems.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nat Commun Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nat Commun Ano de publicação: 2023 Tipo de documento: Article