Your browser doesn't support javascript.
loading
Proteomic and phosphoproteomic analyses of Jurkat T-cell treated with 2'3' cGAMP reveals various signaling axes impacted by cyclic dinucleotides.
Onyedibe, Kenneth I; Mohallem, Rodrigo; Wang, Modi; Aryal, Uma K; Sintim, Herman O.
Afiliação
  • Onyedibe KI; Department of Chemistry, Purdue University, West Lafayette, IN, USA; Purdue Institute for Drug Discovery and Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA.
  • Mohallem R; Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA; Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA.
  • Wang M; Department of Chemistry, Purdue University, West Lafayette, IN, USA.
  • Aryal UK; Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA; Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA.
  • Sintim HO; Department of Chemistry, Purdue University, West Lafayette, IN, USA; Purdue Institute for Drug Discovery and Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA. Electronic address: hsintim@purdue.edu.
J Proteomics ; 279: 104869, 2023 05 15.
Article em En | MEDLINE | ID: mdl-36889538
Cyclic dinucleotides (CDNs), such as 2'3'-cGAMP, bind to STING to trigger the production of cytokines and interferons, mainly via activation of TBK1. STING activation by CDN also leads to the release and activation of Nuclear Factor Kappa-light-chain-enhancer of activated B cells (NF-κB) via the phosphorylation of Inhibitor of NF-κB (IκB)-alpha (IκBα) by IκB Kinase (IKK). Beyond the canonical TBK1 or IKK phosphorylations, little is known about how CDNs broadly affect the phosphoproteome and/or other signaling axes. To fill this gap, we performed an unbiased proteome and phosphoproteome analysis of Jurkat T-cell treated with 2'3'-cGAMP or vehicle control to identify proteins and phosphorylation sites that are differentially modulated by 2'3'-cGAMP. We uncovered different classes of kinase signatures associated with cell response to 2'3'-cGAMP. 2'3'-cGAMP upregulated Arginase 2 (Arg2) and the antiviral innate immune response receptor RIG-I as well as proteins involved in ISGylation, E3 ISG15-protein ligase HERC5 and ubiquitin-like protein ISG15, while downregulating ubiquitin-conjugating enzyme UBE2C. Kinases that play a role in DNA double strand break repair, apoptosis, and cell cycle regulation were differentially phosphorylated. Overall, this work demonstrates that 2'3'-cGAMP has a much broader effects on global phosphorylation events than currently appreciated, beyond the canonical TBK1/IKK signaling. SIGNIFICANCE: The host cyclic dinucleotide, 2'3'-cGAMP is known to bind to Stimulator of Interferon Genes (STING) to trigger the production of cytokines and interferons in immune cells via STING-TBK1-IRF3 pathway. Beyond the canonical phosphorelay via the STING-TBK1-IRF3 pathway, little is known about how this second messenger broadly affects the global proteome. Using an unbiased phosphoproteomics, this study identifies several kinases and phosphosites that are modulated by cGAMP. The study expands our knowledge about how cGAMP modulates global proteome and also global phosphorylations.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: NF-kappa B / Proteínas Serina-Treonina Quinases Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: J Proteomics Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: NF-kappa B / Proteínas Serina-Treonina Quinases Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: J Proteomics Ano de publicação: 2023 Tipo de documento: Article