Your browser doesn't support javascript.
loading
Biochar as an enhancer of the stability, mesoporous structure and oxytetracycline adsorption capacity of ferrihydrite: Role of the silicon component.
Wang, Meizhen; Shen, Jiahao; Xu, Xiaoqin; Feng, Huajun; Huang, Dan; Chen, Zaiming.
Afiliação
  • Wang M; School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China.
  • Shen J; School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China.
  • Xu X; School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China.
  • Feng H; School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China.
  • Huang D; School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China.
  • Chen Z; School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China. Electronic address: chenzm@zjgsu.edu.cn.
Sci Total Environ ; 875: 162652, 2023 Jun 01.
Article em En | MEDLINE | ID: mdl-36894094
ABSTRACT
The char component of biochar can act as an electron shuttle and redox agent to accelerate the transformation of ferrihydrite, but how the silicon component of biochar affects ferrihydrite transformation and pollutant removal remains unclear. In this paper, infrared spectroscopy, electron microscopy, transformation experiments and batch sorption experiments were conducted to examine a 2-line ferrihydrite formed by alkaline precipitation of Fe3+ on a rice straw-derived biochar. Fe-O-Si bonds were developed between the precipitated ferrihydrite particles and biochar silicon component, increasing mesopore volume (for mesopores with diameters of 10-100 nm) and surface area of ferrihydrite as the Fe-O-Si formation probably alleviated the aggregation of ferrihydrite particles. The Fe-O-Si bonding-contributed interactions blocked the transformation to goethite for ferrihydrite precipitated on biochar in a 30-day ageing and a 5-day Fe2+ catalysis ageing. Moreover, there was an increase of oxytetracycline adsorption capacity onto ferrihydrite-loaded biochar, which reached amazingly 3460 mg/g at the maximum, due to the Fe-O-Si bonding-contributed increase of surface area and oxytetracycline coordination sites. Ferrihydrite-loaded biochar as a soil amendment enhanced oxytetracycline adsorption and reduced the bacterial toxicity of dissolved oxytetracycline better than ferrihydrite did. These results provide new perspectives for the role of biochar (especially its silicon component) as an iron-based material carrier and a soil additive in the environmental effects of iron (hydr) oxides in water and soil.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oxitetraciclina Idioma: En Revista: Sci Total Environ Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oxitetraciclina Idioma: En Revista: Sci Total Environ Ano de publicação: 2023 Tipo de documento: Article