Intercell moiré exciton complexes in electron lattices.
Nat Mater
; 22(5): 599-604, 2023 May.
Article
em En
| MEDLINE
| ID: mdl-36894775
Excitons, Coulomb-bound electron-hole pairs, play a crucial role in both optical excitation and correlated phenomena in solids. When excitons interact with other quasiparticles, few- and many-body excited states can appear. Here we report an interaction between exciton and charges enabled by unusual quantum confinement in two-dimensional moiré superlattices, which results in many-body ground states composed of moiré excitons and correlated electron lattices. In an H-stacked (60o-twisted) WS2/WSe2 heterobilayer, we found an interlayer moiré exciton whose hole is surrounded by its partner electron's wavefunction distributed among three adjacent moiré traps. This three-dimensional excitonic structure enables large in-plane electrical quadrupole moments in addition to the vertical dipole. Upon doping, the quadrupole facilitates the binding of interlayer moiré excitons to the charges in neighbouring moiré cells, forming intercell charged exciton complexes. Our work provides a framework for understanding and engineering emergent exciton many-body states in correlated moiré charge orders.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Nat Mater
Ano de publicação:
2023
Tipo de documento:
Article