Surface Modification of Hollow Structure TiO2 Nanospheres for Enhanced Photocatalytic Hydrogen Evolution.
Nanomaterials (Basel)
; 13(5)2023 Mar 03.
Article
em En
| MEDLINE
| ID: mdl-36903804
Engineering the surface structure of semiconductor is one of the most promising strategies for improving the separation and transfer efficiency of charge, which is a key issue in photocatalysis. Here, we designed and fabricated the C decorated hollow TiO2 photocatalysts (C-TiO2), in which 3-aminophenol-formaldehyde resin (APF) spheres were used as template and carbon precursor. It was determined that the C content can be easily controlled by calcinating the APF spheres with different time. Moreover, the synergetic effort between the optimal C content and the formed Ti-O-C bonds in C-TiO2 were determined to increase the light absorption and greatly promote the separation and transfer of charge in the photocatalytic reaction, which is verified from UV-vis, PL, photocurrent, and EIS characterizations. Remarkably, the activity of the C-TiO2 is 5.5-fold higher than that of TiO2 in H2 evolution. A feasible strategy for rational design and construction of surface-engineered hollow photocatalysts to improve the photocatalytic performance was provided in this study.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Nanomaterials (Basel)
Ano de publicação:
2023
Tipo de documento:
Article