Your browser doesn't support javascript.
loading
Influence of the Au-Ti Active Site of the Titanosilicate MWW Zeolite on the Catalytic Activity of Ethane Dehydrogenation in the Presence of O2.
Meng, Xu; Wu, Guiying; Cheng, Xiaojie; Wang, Jing; Peng, Aoqiang; Liang, Tingyu; Jin, Fang.
Afiliação
  • Meng X; Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Novel Reactor & Green Chemical Technology Key Laboratory, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China.
  • Wu G; Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Novel Reactor & Green Chemical Technology Key Laboratory, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China.
  • Cheng X; Research Institute of Petroleum Processing, Sinopec, Beijing 10083, People's Republic of China.
  • Wang J; Key Laboratory of Catalysis, Center Tech Tianjin Chemical Research and Design Institute Company, Limited, Tianjin 300131, People's Republic of China.
  • Peng A; Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Novel Reactor & Green Chemical Technology Key Laboratory, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China.
  • Liang T; Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Novel Reactor & Green Chemical Technology Key Laboratory, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China.
  • Jin F; Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Novel Reactor & Green Chemical Technology Key Laboratory, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China.
Langmuir ; 39(12): 4427-4438, 2023 Mar 28.
Article em En | MEDLINE | ID: mdl-36913507
ABSTRACT
The titanosilicate zeolite with a MWW topology structure was synthesized by the atom-planting method through the dehydrochlorination of the hydroxyl group in the deboronated ERB-1 zeolite (D-ERB-1) and TiCl4, and Au was further loaded with the deposition precipitation method to apply for the ethane direct dehydrogenation (DH) and dehydrogenation of ethane in the presence of O2 (O2-DH). It was found that Au nanoparticles (NPs) below 5 nm exhibited good activity for ethane direct dehydrogenation and O2-DH. The addition of titanium can not only anchor more Au but also make Au have a more dispersed homogeneous distribution. The ethane O2-DH catalytic performances of Au-loaded Ti-incorporated D-ERB-1 (Ti-D-ERB-1) were compared to those of Au-loaded ZnO-D-ERB-1 and pure silicate D-ERB-1. The results confirm that ethane O2-DH catalyzed by Au-Ti paired active sites is a tandem reaction of catalytic ethane DH and selective H2 combustion (SHC) of generated H2. According to the experimental results and calculated kinetic parameters, such as the activation energy of DH and SHC reaction heat of O2-DH, SHC catalyzed by the Au/Ti-D-ERB-1 catalyst containing the Au-Ti active site can not only break the ethane dehydrogenation thermodynamic equilibrium limitation to improve the ethylene yield but also suppress the CO2 and CO selectivity.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Langmuir Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Langmuir Ano de publicação: 2023 Tipo de documento: Article