Your browser doesn't support javascript.
loading
Identification and synergetic mechanism of TCE, H2 and O2 metabolic microorganisms in the joint H2/O2 system.
Li, Cui; Xue, Chen; Ouyang, Weiwei; Liu, Minghui; Sun, Yingtao; Liu, Hui.
Afiliação
  • Li C; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430078, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, Hubei 430078, PR China.
  • Xue C; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430078, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, Hubei 430078, PR China.
  • Ouyang W; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430078, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, Hubei 430078, PR China.
  • Liu M; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430078, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, Hubei 430078, PR China.
  • Sun Y; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, PR China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, PR China.
  • Liu H; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430078, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, Hubei 430078, PR China. Elec
Sci Total Environ ; 879: 163026, 2023 Jun 25.
Article em En | MEDLINE | ID: mdl-36965730
ABSTRACT
The sole H2 and O2 usually promote chlorinated hydrocarbons (CHCs) biotransformation by several mechanisms, including reductive dechlorination and aerobic oxidation. However, the mechanism of the CHCs transformation in joint H2 and O2 system (H2/O2 system) is still unclear. In this study, the degradation kinetics of trichloroethene (TCE) were investigated and DNA stable isotope probing (DNA-SIP) were used to explore the synergistic mechanism of functional microorganisms on TCE degradation under the condition of H2/O2 coexistence. In the H2/O2 microcosm, TCE was significantly removed by 13.00 µM within 40 days, much higher than N2, H2 and O2 microcosms, and 1,1-DCE was detected as an intermediate. DNA-SIP technology identified three anaerobic TCE metabolizers, five aerobic TCE metabolizers, nine hydrogen-oxidizing bacteria (HOB), some TCE metabolizers utilizing limited O2, and some anaerobic dechlorinating bacteria reductively using H2 to dechlorinate TCE. It is also confirmed for the first time that 3 OUTs belonging to Methyloversatilis and SH-PL14 can simultaneously utilize H2 and O2 as energy sources to grow and metabolize TCE or 1,1-DCE. HOB may provide carbon sources or electron acceptors or donors for TCE biotransformation. These findings confirm the coexistence of anaerobic and aerobic TCE metabolizers and degraders, which synergistically promoted the conversion of TCE in the joint H2/O2 system. Our results provide more information about the functional microbe resources and synergetic mechanisms for TCE degradation.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tricloroetileno / Hidrocarbonetos Clorados Tipo de estudo: Diagnostic_studies / Prognostic_studies Idioma: En Revista: Sci Total Environ Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tricloroetileno / Hidrocarbonetos Clorados Tipo de estudo: Diagnostic_studies / Prognostic_studies Idioma: En Revista: Sci Total Environ Ano de publicação: 2023 Tipo de documento: Article