Your browser doesn't support javascript.
loading
Fully automated bladder tumor segmentation from T2 MRI images using 3D U-Net algorithm.
Coroama, Diana Mihaela; Dioșan, Laura; Telecan, Teodora; Andras, Iulia; Crișan, Nicolae; Medan, Paul; Andreica, Anca; Caraiani, Cosmin; Lebovici, Andrei; Boca, Bianca; Bálint, Zoltán.
Afiliação
  • Coroama DM; Faculty of Mathematics and Computer Science, Babeș-Bolyai University, Cluj-Napoca, Romania.
  • Dioșan L; Faculty of Mathematics and Computer Science, Babeș-Bolyai University, Cluj-Napoca, Romania.
  • Telecan T; Department of Urology, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
  • Andras I; Department of Urology, Municipal Clinical Hospital, Cluj-Napoca, Romania.
  • Crișan N; Department of Urology, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
  • Medan P; Department of Urology, Municipal Clinical Hospital, Cluj-Napoca, Romania.
  • Andreica A; Department of Urology, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
  • Caraiani C; Department of Urology, Municipal Clinical Hospital, Cluj-Napoca, Romania.
  • Lebovici A; Department of Urology, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
  • Boca B; Department of Urology, Municipal Clinical Hospital, Cluj-Napoca, Romania.
  • Bálint Z; Faculty of Mathematics and Computer Science, Babeș-Bolyai University, Cluj-Napoca, Romania.
Front Oncol ; 13: 1096136, 2023.
Article em En | MEDLINE | ID: mdl-36969047
ABSTRACT

Introduction:

Bladder magnetic resonance imaging (MRI) has been recently integrated in the diagnosis pathway of bladder cancer. However, automatic recognition of suspicious lesions is still challenging. Thus, development of a solution for proper delimitation of the tumor and its separation from the healthy tissue is of primordial importance. As a solution to this unmet medical need, we aimed to develop an artificial intelligence-based decision support system, which automatically segments the bladder wall and the tumor as well as any suspect area from the 3D MRI images. Materials We retrospectively assessed all patients diagnosed with bladder cancer, who underwent MRI at our department (n=33). All examinations were performed using a 1.5 Tesla MRI scanner. All images were reviewed by two radiologists, who performed manual segmentation of the bladder wall and all lesions. First, the performance of our fully automated end-to-end segmentation model based on a 3D U-Net architecture (by considering various depths of 4, 5 or 6 blocks) trained in two data augmentation scenarios (on 5 and 10 augmentation datasets per original data, respectively) was tested. Second, two learning setups were analyzed by training the segmentation algorithm with 7 and 14 MRI original volumes, respectively.

Results:

We obtained a Dice-based performance over 0.878 for automatic segmentation of bladder wall and tumors, as compared to manual segmentation. A larger training dataset using 10 augmentations for 7 patients could further improve the results of the U-Net-5 model (0.902 Dice coefficient at image level). This model performed best in terms of automated segmentation of bladder, as compared to U-Net-4 and U-Net-6. However, in this case increased time for learning was needed as compared to U-Net-4. We observed that an extended dataset for training led to significantly improved segmentation of the bladder wall, but not of the tumor.

Conclusion:

We developed an intelligent system for bladder tumors automated diagnostic, that uses a deep learning model to segment both the bladder wall and the tumor. As a conclusion, low complexity networks, with less than five-layers U-Net architecture are feasible and show good performance for automatic 3D MRI image segmentation in patients with bladder tumors.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Guideline / Prognostic_studies Idioma: En Revista: Front Oncol Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Guideline / Prognostic_studies Idioma: En Revista: Front Oncol Ano de publicação: 2023 Tipo de documento: Article