Your browser doesn't support javascript.
loading
Genomic Analysis of Haloarchaea from Diverse Environments, including Permian Halite, Reveals Diversity of Ultraviolet Radiation Survival and DNA Photolyase Gene Variants.
Nag, Sagorika; DasSarma, Priya; Crowley, David J; Hamawi, Rafael; Tepper, Samantha; Anton, Brian P; Guzmán, Daniel; DasSarma, Shiladitya.
Afiliação
  • Nag S; Blue Marble Space Institute of Science, Seattle, WA 98104, USA.
  • DasSarma P; Blue Marble Space Institute of Science, Seattle, WA 98104, USA.
  • Crowley DJ; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
  • Hamawi R; Department of Biological and Physical Sciences, Assumption University, Worcester, MA 01609, USA.
  • Tepper S; Department of Biological and Physical Sciences, Assumption University, Worcester, MA 01609, USA.
  • Anton BP; Department of Biological and Physical Sciences, Assumption University, Worcester, MA 01609, USA.
  • Guzmán D; New England Biolabs, Ipswich, MA 01938, USA.
  • DasSarma S; Centro de Biotecnología, Faculty of Sciences and Technology, Universidad Mayor de San Simón, Cochabamba 4962, Bolivia.
Microorganisms ; 11(3)2023 Feb 28.
Article em En | MEDLINE | ID: mdl-36985181
ABSTRACT
Ultraviolet (UV) radiation responses of extremophilic and archaeal microorganisms are of interest from evolutionary, physiological, and astrobiological perspectives. Previous studies determined that the halophilic archaeon, Halobacterium sp. NRC-1, which survives in multiple extremes, is highly tolerant of UV radiation. Here, Halobacterium sp. NRC-1 UV tolerance was compared to taxonomically diverse Haloarchaea isolated from high-elevation salt flats, surface warm and cold hypersaline lakes, and subsurface Permian halite deposits. Haloterrigena/Natrinema spp. from subsurface halite deposits were the least tolerant after exposure to photoreactivating light. This finding was attributed to deviation of amino acid residues in key positions in the DNA photolyase enzyme or to the complete absence of the photolyase gene. Several Halobacterium, Halorubrum and Salarchaeum species from surface environments exposed to high solar irradiance were found to be the most UV tolerant, and Halorubrum lacusprofundi from lake sediment was of intermediate character. These results indicate that high UV tolerance is not a uniform character trait of Haloarchaea and is likely reflective of UV exposure experienced in their environment. This is the first report correlating natural UV tolerance to photolyase gene functionality among Haloarchaea and provides insights into their survival in ancient halite deposits and potentially on the surface of Mars.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Microorganisms Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Microorganisms Ano de publicação: 2023 Tipo de documento: Article