Your browser doesn't support javascript.
loading
Bistable Optoelectronic Properties Originated from the Scissoring Motion of the TEMPO Skeleton in Supramolecular Radical Ferroelectrics.
Xie, Yongfa; Li, Teng-Fei; Chen, Wei; Liang, Lixin; Lv, Hui-Peng; Liu, Qing; Meng, Yin-Shan; Hou, Guangjin; Cai, Hu.
Afiliação
  • Xie Y; School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
  • Li TF; School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
  • Chen W; School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
  • Liang L; State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China.
  • Lv HP; Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, China.
  • Liu Q; School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
  • Meng YS; State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
  • Hou G; State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China.
  • Cai H; School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
Inorg Chem ; 62(14): 5543-5552, 2023 Apr 10.
Article em En | MEDLINE | ID: mdl-36995797
Bistable materials with multiphysical channels, such as optical, electrical, and magnetic properties, have been paid dramatic attention due to their alternativity of the signal status in electronic devices. Herein, three stable supramolecular radicals ([(NH3-TEMPO)(18-crown-6)][XF6] (1, X = P; 2, X = As; 3, X = Sb)) were synthesized and characterized. The former two molecules present ferroelectric phase transitions around 381.7 and 382.7 K, respectively, with bistability in dielectric property and second-harmonic generation (SHG) effect, which are first found in supramolecular radicals. Their ferroelectric transition and bistable properties are generated from a net polar crystal structure owing to the static ordered packing of NH3-TEMPO radical cations in the low-temperature phase (LTP) to a nonpolar structure owing to a distinctive symmetric scissoring motion of NH3-TEMPO radical cations between two 18-crown-6 molecules in the high-temperature phase (HTP). Both of them exhibit paramagnetic properties in HTP and LTP states since no intermolecular spin-spin interaction occurs due to the long distances among the radicals in their crystals. These results make us possible to design bistable optoelectronic radical materials with bistability in magnetic property in the future.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Inorg Chem Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Inorg Chem Ano de publicação: 2023 Tipo de documento: Article