Your browser doesn't support javascript.
loading
SoundScape learning: An automatic method for separating fish chorus in marine soundscapes.
Kim, Ella B; Frasier, Kaitlin E; McKenna, Megan F; Kok, Annebelle C M; Peavey Reeves, Lindsey E; Oestreich, William K; Arrieta, Gabrielle; Wiggins, Sean; Baumann-Pickering, Simone.
Afiliação
  • Kim EB; Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92037, USA.
  • Frasier KE; Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92037, USA.
  • McKenna MF; National Marine Sanctuary Foundation-Contracted, Silver Spring, Maryland 20910, USA.
  • Kok ACM; Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92037, USA.
  • Peavey Reeves LE; National Marine Sanctuary Foundation, Silver Spring, Maryland 20910, USA.
  • Oestreich WK; Monterey Bay Aquarium Research Institute, Moss Landing, California 95039, USA.
  • Arrieta G; Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92037, USA.
  • Wiggins S; Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92037, USA.
  • Baumann-Pickering S; Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92037, USA.
J Acoust Soc Am ; 153(3): 1710, 2023 03.
Article em En | MEDLINE | ID: mdl-37002102
Marine soundscapes provide the opportunity to non-invasively learn about, monitor, and conserve ecosystems. Some fishes produce sound in chorus, often in association with mating, and there is much to learn about fish choruses and the species producing them. Manually analyzing years of acoustic data is increasingly unfeasible, and is especially challenging with fish chorus, as multiple fish choruses can co-occur in time and frequency and can overlap with vessel noise and other transient sounds. This study proposes an unsupervised automated method, called SoundScape Learning (SSL), to separate fish chorus from soundscape using an integrated technique that makes use of randomized robust principal component analysis (RRPCA), unsupervised clustering, and a neural network. SSL was applied to 14 recording locations off southern and central California and was able to detect a single fish chorus of interest in 5.3 yrs of acoustically diverse soundscapes. Through application of SSL, the chorus of interest was found to be nocturnal, increased in intensity at sunset and sunrise, and was seasonally present from late Spring to late Fall. Further application of SSL will improve understanding of fish behavior, essential habitat, species distribution, and potential human and climate change impacts, and thus allow for protection of vulnerable fish species.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Som / Ecossistema Tipo de estudo: Clinical_trials Limite: Animals Idioma: En Revista: J Acoust Soc Am Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Som / Ecossistema Tipo de estudo: Clinical_trials Limite: Animals Idioma: En Revista: J Acoust Soc Am Ano de publicação: 2023 Tipo de documento: Article