Your browser doesn't support javascript.
loading
Shell effects on the dielectric properties of core-shell quantum dots.
Xie, Yujuan; Cui, Yingqi; Zhang, Li; Yang, Mingli.
Afiliação
  • Xie Y; Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China.
  • Cui Y; School of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou 450044, China.
  • Zhang L; Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China.
  • Yang M; Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China.
J Chem Phys ; 158(12): 124311, 2023 Mar 28.
Article em En | MEDLINE | ID: mdl-37003776
The dielectric properties in semiconductor quantum dots are crucial for exciton formation, migration, and recombination. Different from 3D bulk materials, the dielectric response is, however, ambiguous for the small-sized 0D dots in which the effect of outer atoms on the inner atoms is usually described qualitatively. Based on the first-principles calculated electron density, the polarizability of the core-shell CdSe@ZnS wurtzite quantum dots is decomposed into the distributional contributions among which the dipole polarizability of the core is proposed to measure the shell effect on the dielectric properties of core-shell quantum dots. The shell thickness dependence on the shell effect is then studied, which is significant for the outermost shell but decays rapidly in the additional shells. Moreover, this model gives explicit physical origins of the core dipole polarizability in the core-shell QDs, which is determined by the intra-shell polarization and inter-core-shell charge transfer. Our study proposes a new approach for studying the dielectric properties of core-shell quantum dots, which is effective and extendable for other low-dimensional structures.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Chem Phys Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Chem Phys Ano de publicação: 2023 Tipo de documento: Article