Your browser doesn't support javascript.
loading
Crotonylation of GAPDH regulates human embryonic stem cell endodermal lineage differentiation and metabolic switch.
Zhang, Jingran; Shi, Guang; Pang, Junjie; Zhu, Xing; Feng, Qingcai; Na, Jie; Ma, Wenbin; Liu, Dan; Songyang, Zhou.
Afiliação
  • Zhang J; MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
  • Shi G; MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China. shguang@mail.sysu.edu.cn.
  • Pang J; MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
  • Zhu X; MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
  • Feng Q; MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
  • Na J; School of Medicine, Tsinghua University, Beijing, 100084, China.
  • Ma W; MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
  • Liu D; Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
  • Songyang Z; MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China. songyangz@mail.sysu.edu.cn.
Stem Cell Res Ther ; 14(1): 63, 2023 04 03.
Article em En | MEDLINE | ID: mdl-37013624
ABSTRACT

BACKGROUND:

Post-translational modifications of proteins are crucial to the regulation of their activity and function. As a newly discovered acylation modification, crotonylation of non-histone proteins remains largely unexplored, particularly in human embryonic stem cells (hESCs).

METHODS:

We investigated the role of crotonylation in hESC differentiation by introduce crotonate into the culture medium of GFP tagged LTR7 primed H9 cell and extended pluripotent stem cell lines. RNA-seq assay was used to determine the hESC transcriptional features. Through morphological changes, qPCR of pluripotent and germ layer-specific gene markers and flow cytometry analysis, we determined that the induced crotonylation resulted in hESC differentiating into the endodermal lineage. We performed targeted metabolomic analysis and seahorse metabolic measurement to investigate the metabolism features after crotonate induction. Then high-resolution tandem mass spectrometry (LC-MS/MS) revealed the target proteins in hESCs. In addition, the role of crotonylated glycolytic enzymes (GAPDH and ENOA) was evaluated by in vitro crotonylation and enzymatic activity assays. Finally, we used knocked-down hESCs by shRNA, wild GAPDH and GAPDH mutants to explore potential role of GAPDH crotonylation in regulating human embryonic stem cell differentiation and metabolic switch.

RESULT:

We found that induced crotonylation in hESCs resulted in hESCs of different pluripotency states differentiating into the endodermal lineage. Increased protein crotonylation in hESCs was accompanied by transcriptomic shifts and decreased glycolysis. Large-scale crotonylation profiling of non-histone proteins revealed that metabolic enzymes were major targets of inducible crotonylation in hESCs. We further discovered GAPDH as a key glycolytic enzyme regulated by crotonylation during endodermal differentiation from hESCs.

CONCLUSIONS:

Crotonylation of GAPDH decreased its enzymatic activity thereby leading to reduced glycolysis during endodermal differentiation from hESCs.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Células-Tronco Embrionárias Humanas / Gliceraldeído-3-Fosfato Desidrogenases Limite: Humans Idioma: En Revista: Stem Cell Res Ther Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Células-Tronco Embrionárias Humanas / Gliceraldeído-3-Fosfato Desidrogenases Limite: Humans Idioma: En Revista: Stem Cell Res Ther Ano de publicação: 2023 Tipo de documento: Article