Your browser doesn't support javascript.
loading
IrO2 as a promising support to boost oxygen reduction reaction on Pt in acid under high temperature conditions.
Liu, Bing Yu; Chen, Wei; Ye, Xu-Xu; Cai, Jun; Chen, Yan-Xia.
Afiliação
  • Liu BY; Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
  • Chen W; Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
  • Ye XX; Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
  • Cai J; Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
  • Chen YX; Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
J Chem Phys ; 158(13): 134710, 2023 Apr 07.
Article em En | MEDLINE | ID: mdl-37031117
ABSTRACT
Metal oxide nanoparticle (NP) supports of both good conductivity and stability have the potential to enhance both the reaction activity and stability of the loaded electrocatalysts. In this paper, a facile two-step approach to disperse Pt nanoparticles on the surface of an IrO2 NP support (Pt/IrO2) was developed. Physical characterization by x-ray diffraction spectroscopy and transmission/scanning electron microscopy suggests a good dispersion of the Pt NPs. The temperature effect (from 293 to 353 K) of oxygen reduction reaction on Pt/IrO2 was studied by using a rotating ring disk electrode The results show that although the kinetic current density on Pt/IrO2 is close to that on commercial Pt/C at room temperature, the apparent activation energy (Ea,app) in the former case is much lower, suggesting a much higher activity at elevated temperatures. The superiority in Ea,app is attributed to the electron interaction between Pt and the IrO2 support, as supported by the change of surface chemical state given by x-ray photo-electron spectroscopy.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Chem Phys Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Chem Phys Ano de publicação: 2023 Tipo de documento: Article