Your browser doesn't support javascript.
loading
Erg6 Acts as a Downstream Effector of the Transcription Factor Flo8 To Regulate Biofilm Formation in Candida albicans.
Jin, Xueyang; Luan, Xiaoyi; Xie, Fei; Chang, Wenqiang; Lou, Hongxiang.
Afiliação
  • Jin X; Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.
  • Luan X; Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.
  • Xie F; Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, Shandong Province, China.
  • Chang W; Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.
  • Lou H; Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.
Microbiol Spectr ; 11(3): e0039323, 2023 06 15.
Article em En | MEDLINE | ID: mdl-37098889
ABSTRACT
The yeast-to-hyphal morphotype transition and subsequent biofilm formation are important virulence factors of Candida albicans and are closely associated with ergosterol biosynthesis. Flo8 is an important transcription factor that determines filamentous growth and biofilm formation in C. albicans. However, the relationship between Flo8 and regulation of the ergosterol biosynthesis pathway remains elusive. Here, we analyzed the sterol composition of a flo8-deficient C. albicans strain by gas chromatography-mass spectrometry and observed the accumulation of the sterol intermediate zymosterol, the substrate of Erg6 (C-24 sterol methyltransferase). Accordingly, the transcription level of ERG6 was reduced in the flo8-deficient strain. Yeast one-hybrid experiments revealed that Flo8 physically interacted with the ERG6 promoter. Ectopic overexpression of ERG6 in the flo8-deficient strain partially restored biofilm formation and in vivo virulence in a Galleria mellonella infection model. These findings suggest that Erg6 is a downstream effector of the transcription factor Flo8 that mediates the cross talk between sterol synthesis and virulence factors in C. albicans. IMPORTANCE Biofilm formation by C. albicans hinders its eradication by immune cells and antifungal drugs. Flo8 is an important morphogenetic transcription factor that regulates the biofilm formation and in vivo virulence of C. albicans. However, little is known about how Flo8 regulates biofilm formation and fungal pathogenicity. Here, we determined that Flo8 directly binds to the promoter of ERG6 to positively regulate its transcriptional expression. Consistently, loss of flo8 results in the accumulation of the substrate of Erg6. Moreover, ectopic overexpression of ERG6 at least partially restores the biofilm formation and virulence of the flo8-deficient strain both in vitro and in vivo. This work provides a new perspective on the metabolic link between transcription factors and morphotypes in C. albicans.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Candida albicans Tipo de estudo: Prognostic_studies Idioma: En Revista: Microbiol Spectr Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Candida albicans Tipo de estudo: Prognostic_studies Idioma: En Revista: Microbiol Spectr Ano de publicação: 2023 Tipo de documento: Article