Your browser doesn't support javascript.
loading
Pore Environmental Modification by Alkoxy Groups in Pore-Space-Partitioned Metal-Organic Frameworks to Achieve Gas Uptake-Selectivity Balance.
Li, Shu-Yi; Wang, Kun; Wang, Jia-Wen; Fan, Shu-Cong; Zhang, Peng; Zhai, Quan-Guo.
Afiliação
  • Li SY; Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062 Shaanxi, China.
  • Wang K; Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062 Shaanxi, China.
  • Wang JW; Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062 Shaanxi, China.
  • Fan SC; Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062 Shaanxi, China.
  • Zhang P; Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062 Shaanxi, China.
  • Zhai QG; Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062 Shaanxi, China.
Inorg Chem ; 62(18): 7069-7078, 2023 May 08.
Article em En | MEDLINE | ID: mdl-37126858
Due to the trade-off barrier between high storage capacity and high selectivity, the controllable and systematic design of metal-organic frameworks (MOFs) aiming at performance optimization is still challenging. Herein, considering the effectiveness of alkoxy group functionalization and a pore-space partition strategy, a series of rigid Mg-pacs-MOFs (SNNU-10-n, n = 1-6) with flexible side chains are built for the first time, realizing systematic pore environmental modification. The steric hindrance effects, electron-donating ability, and the flexibility of alkoxy groups are considered as key factors, which lead to a regular change of gas adsorption capacity and selectivity. Notably, methoxy-modified SNNU-10-1 with moderately high storage capacities of C2H2 (139.4 cm3 g-1), C2H4 (100.4 cm3 g-1), CO2 (105.0 cm3 g-1), and high selectivity values for equimolar C2H2/CH4 (431.8), C2H4/CH4 (164.2), and CO2/CH4 (16.1) mixture separation at 273 K and 100 kPa achieves an ideal gas uptake-selectivity balance. Breakthrough experiments verified that it could effectively separate the above-mentioned mixtures under ambient conditions, and GCMC simulation provides a deep understanding of methoxy group functionalization. Undoubtedly, this work not only realizes controllable regulation of gas adsorption behavior but also proves the validity of improving selectivity by alkoxy groups in those platforms with high gas-uptake potential to overcome the trade-off barrier.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Inorg Chem Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Inorg Chem Ano de publicação: 2023 Tipo de documento: Article