Your browser doesn't support javascript.
loading
Intelligent Pd1.7Bi@CeO2 Nanosystem with Dual-Enzyme-Mimetic Activities for Cancer Hypoxia Relief and Synergistic Photothermal/Photodynamic/Chemodynamic Therapy.
Chen, Xiaoyu; Zhao, Chunhua; Liu, Dingxin; Lin, Kunpeng; Lu, Jingnan; Zhao, Shuang; Yang, Jiang; Lin, Huanxin.
Afiliação
  • Chen X; State Key Laboratory of Oncology in South China, Department of Radiotherapy, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
  • Zhao C; State Key Laboratory of Oncology in South China, Department of Radiotherapy, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
  • Liu D; State Key Laboratory of Oncology in South China, Department of Radiotherapy, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
  • Lin K; School of Life Sciences, Henan University, Kaifeng 475004, China.
  • Lu J; School of Life Sciences, Henan University, Kaifeng 475004, China.
  • Zhao S; Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng 475004, China.
  • Yang J; State Key Laboratory of Oncology in South China, Department of Radiotherapy, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
  • Lin H; State Key Laboratory of Oncology in South China, Department of Radiotherapy, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
ACS Appl Mater Interfaces ; 15(18): 21804-21818, 2023 May 10.
Article em En | MEDLINE | ID: mdl-37129251
Reactive oxygen species-mediated therapeutic strategies, including chemodynamic therapy (CDT) and photodynamic therapy (PDT), have exhibited translational promise for effective cancer management. However, monotherapy often ends up with the incomplete elimination of the entire tumor due to inherent limitations. Herein, we report a core-shell-structured Pd1.7Bi@CeO2-ICG (PBCI) nanoplatform constructed by a facile and effective strategy for synergistic CDT, PDT, and photothermal therapy. In the system, both Pd1.7Bi and CeO2 constituents exhibit peroxidase- and catalase-like characteristics, which not only generate cytotoxic hydroxyl radicals (•OH) for CDT but also produce O2 in situ and relieve tumor hypoxia for enhanced PDT. Furthermore, upon 808 nm laser irradiation, Pd1.7Bi@CeO2 and indocyanine green (ICG) coordinately prompt favorable photothermia, resulting in thermodynamically amplified catalytic activities. Meanwhile, PBCI is a contrast agent for near-infrared fluorescence imaging to determine the optimal laser therapeutic window in vivo. Consequently, effective tumor elimination was realized through the above-combined functions. The as-synthesized unitary PBCI theranostic nanoplatform represents a potential one-size-fits-all approach in multimodal synergistic therapy of hypoxic tumors.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fotoquimioterapia / Neoplasias Limite: Humans Idioma: En Revista: ACS Appl Mater Interfaces Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fotoquimioterapia / Neoplasias Limite: Humans Idioma: En Revista: ACS Appl Mater Interfaces Ano de publicação: 2023 Tipo de documento: Article