Limitations of principal components in quantitative genetic association models for human studies.
Elife
; 122023 05 04.
Article
em En
| MEDLINE
| ID: mdl-37140344
Principal Component Analysis (PCA) and the Linear Mixed-effects Model (LMM), sometimes in combination, are the most common genetic association models. Previous PCA-LMM comparisons give mixed results, unclear guidance, and have several limitations, including not varying the number of principal components (PCs), simulating simple population structures, and inconsistent use of real data and power evaluations. We evaluate PCA and LMM both varying number of PCs in realistic genotype and complex trait simulations including admixed families, subpopulation trees, and real multiethnic human datasets with simulated traits. We find that LMM without PCs usually performs best, with the largest effects in family simulations and real human datasets and traits without environment effects. Poor PCA performance on human datasets is driven by large numbers of distant relatives more than the smaller number of closer relatives. While PCA was known to fail on family data, we report strong effects of family relatedness in genetically diverse human datasets, not avoided by pruning close relatives. Environment effects driven by geography and ethnicity are better modeled with LMM including those labels instead of PCs. This work better characterizes the severe limitations of PCA compared to LMM in modeling the complex relatedness structures of multiethnic human data for association studies.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Herança Multifatorial
/
Estudo de Associação Genômica Ampla
Tipo de estudo:
Prognostic_studies
/
Risk_factors_studies
Limite:
Humans
Idioma:
En
Revista:
Elife
Ano de publicação:
2023
Tipo de documento:
Article