Your browser doesn't support javascript.
loading
Fabrication of a Polysaccharide-Protein/Protein Complex Stabilized Oral Nanoemulsion to Facilitate the Therapeutic Effects of 1,8-Cineole on Atherosclerosis.
Chen, Yi; Wang, Jianing; Xu, Jinzhuan; Zhang, Jiyuan; Xu, Shan; Zhang, Qing; Huang, Jing; Peng, Jianqing; Xu, Haiyu; Du, Qianming; Gong, Zipeng.
Afiliação
  • Xu H; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
ACS Nano ; 17(10): 9090-9109, 2023 05 23.
Article em En | MEDLINE | ID: mdl-37172004
ABSTRACT
Atherosclerosis (AS) is a systemic disease characterized by lipid deposition in the blood vessel wall that urgently requires effective and safe therapeutic drugs for long-term treatment. An essential oil monomer-1,8-cineole (CIN) with ameliorative effects on vascular injuries has considerable potential for preventing the progression of AS because of its antioxidant, anti-inflammation, and cholesterol regulatory effects. However, the high volatility and instability of CIN result in low oral bioavailability and a short half-life, thereby limiting its clinical application. We formulated a nanoemulsion using a polysaccharide-protein/protein complex (dextran-bovine serum albumin/protamine, DEX5k-BSA/PTM) as an emulsifier, with vitamin B12 (VB12) as the ligand to facilitate the transportation across the small intestine. An emulsion preparation method using a microjet followed by ultraviolet irradiation was developed to obtain the CIN-loaded oral nanoemulsion CIN@DEX5k-BSA/PTM/VB12. The nanoemulsion improved the stability of CIN both in vitro and in vivo, prolonged the retention time in the gastrointestinal tract (GIT), and enhanced the permeability across the mucus layer and intestinal epithelial cells to increase oral bioavailability and plaque accumulation of CIN. Validated in an AS mouse model, CIN@DEX5k-BSA/PTM/VB12 achieved prominent therapeutic efficacy combating AS. This study highlights the advantages of DEX5k-BSA/PTM and VB12 in the development of nanoemulsions for CIN and provides a promising oral nanoplatform for the delivery of essential oils.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 1_ASSA2030 Base de dados: MEDLINE Assunto principal: Polissacarídeos / Aterosclerose Limite: Animals Idioma: En Revista: ACS Nano Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 1_ASSA2030 Base de dados: MEDLINE Assunto principal: Polissacarídeos / Aterosclerose Limite: Animals Idioma: En Revista: ACS Nano Ano de publicação: 2023 Tipo de documento: Article