Running throughout Middle-Age Keeps Old Adult-Born Neurons Wired.
eNeuro
; 10(5)2023 05.
Article
em En
| MEDLINE
| ID: mdl-37188520
Exercise may prevent or delay aging-related memory loss and neurodegeneration. In rodents, running increases the number of adult-born neurons in the dentate gyrus (DG) of the hippocampus, in association with improved synaptic plasticity and memory function. However, it is unclear whether adult-born neurons remain fully integrated into the hippocampal network during aging and whether long-term running affects their connectivity. To address this issue, we labeled proliferating DG neural progenitor cells with retrovirus expressing the avian TVA receptor in two-month-old sedentary and running male C57Bl/6 mice. More than six months later, we injected EnvA-pseudotyped rabies virus into the DG as a monosynaptic retrograde tracer, to selectively infect TVA expressing "old" new neurons. We identified and quantified the direct afferent inputs to these adult-born neurons within the hippocampus and (sub)cortical areas. Here, we show that long-term running substantially modifies the network of the neurons generated in young adult mice, upon middle-age. Exercise increases input from hippocampal interneurons onto "old" adult-born neurons, which may play a role in reducing aging-related hippocampal hyperexcitability. In addition, running prevents the loss of adult-born neuron innervation from perirhinal cortex, and increases input from subiculum and entorhinal cortex, brain areas that are essential for contextual and spatial memory. Thus, long-term running maintains the wiring of "old" new neurons, born during early adulthood, within a network that is important for memory function during aging.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Corrida
/
Neurogênese
Limite:
Animals
Idioma:
En
Revista:
ENeuro
Ano de publicação:
2023
Tipo de documento:
Article