Your browser doesn't support javascript.
loading
Utilizing Epigenetic Modification as a Reactive Handle To Regulate RNA Function and CRISPR-Based Gene Regulation.
Qi, Qianqian; Liu, Xingyu; Fu, Fang; Shen, Wei; Cui, Shuangyu; Yan, Shen; Zhang, Yutong; Du, Yuhao; Tian, Tian; Zhou, Xiang.
Afiliação
  • Qi Q; Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China.
  • Liu X; Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China.
  • Fu F; Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China.
  • Shen W; Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China.
  • Cui S; Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China.
  • Yan S; Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China.
  • Zhang Y; Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China.
  • Du Y; Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China.
  • Tian T; Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China.
  • Zhou X; Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China.
J Am Chem Soc ; 145(21): 11678-11689, 2023 05 31.
Article em En | MEDLINE | ID: mdl-37191624
ABSTRACT
The current methods to control RNA functions in living conditions are limited. The new RNA-controlling strategy presented in this study involves utilizing 5-formylcytidine (f5C)-directed base manipulation. This study shows that malononitrile and pyridine boranes can effectively manipulate the folding, small molecule binding, and enzyme recognition of f5C-bearing RNAs. We further demonstrate the efficiency of f5C-directed reactions in controlling two different clustered regularly interspaced short palindromic repeat (CRISPR) systems. Although further studies are needed to optimize the efficiency of these reactions in vivo, this small molecule-based approach presents exciting new opportunities for regulating CRISPR-based gene expression and other applications.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: RNA / Sistemas CRISPR-Cas Idioma: En Revista: J Am Chem Soc Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: RNA / Sistemas CRISPR-Cas Idioma: En Revista: J Am Chem Soc Ano de publicação: 2023 Tipo de documento: Article