Your browser doesn't support javascript.
loading
Squeeze-Printing Ultrathin 2D Gallium Oxide out of Liquid Metal for Forming-Free Neuromorphic Memristors.
Xu, Yimeng; Zhang, Jie; Han, Xu; Wang, Xiaojie; Ye, Caiyang; Mu, Wenxiang; Jia, Zhitai; Qian, Kai.
Afiliação
  • Xu Y; State Key Laboratory of Crystal Materials, Institute of Novel Semiconductors, School of Microelectronics, Shandong University, Jinan 250100, China.
  • Zhang J; Shenzhen Research Institute of Shandong University, Shenzhen 518057, China.
  • Han X; Suzhou Research Institute of Shandong University, Suzhou 215123, China.
  • Wang X; State Key Laboratory of Crystal Materials, Institute of Novel Semiconductors, School of Microelectronics, Shandong University, Jinan 250100, China.
  • Ye C; State Key Laboratory of Crystal Materials, Institute of Novel Semiconductors, School of Microelectronics, Shandong University, Jinan 250100, China.
  • Mu W; State Key Laboratory of Crystal Materials, Institute of Novel Semiconductors, School of Microelectronics, Shandong University, Jinan 250100, China.
  • Jia Z; State Key Laboratory of Crystal Materials, Institute of Novel Semiconductors, School of Microelectronics, Shandong University, Jinan 250100, China.
  • Qian K; Shenzhen Research Institute of Shandong University, Shenzhen 518057, China.
ACS Appl Mater Interfaces ; 15(21): 25831-25837, 2023 May 31.
Article em En | MEDLINE | ID: mdl-37199150
Two-dimensional (2D) metal oxides exhibit extraordinary mechanical and electronic properties, leading to new paradigms in the design of electronic and optical systems. However, as a representative, a 2D Ga2O3-based memristor has rarely been touched, which is hindered by challenges associated with large-scale material synthesis. In this work, the ultrathin 2D Ga2O3 layer (∼3 nm thick) formation on the liquid gallium (Ga) surface is transferred with lateral dimensions over several centimeters on a substrate via the squeeze-printing strategy. 2D Ga2O3-based memristors exhibit forming-free and bipolar switching behaviors, which also reveal essential functions of biological synapse, including paired-pulse facilitation, spiking timing-dependent plasticity, and long-term depression and potentiation. These results demonstrate the potential of 2D Ga2O3 material for neuromorphic computing and open up an avenue for future electronics application, such as deep UV photodetectors, multimode nanoresonators, and power switching devices.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Ano de publicação: 2023 Tipo de documento: Article