Your browser doesn't support javascript.
loading
Clustering Similar Diagnosis Terms.
Schulz, Stefan; Abdulnazar, Akhila; Kreuzthaler, Markus.
Afiliação
  • Schulz S; IMI, Medical University of Graz, Austria.
  • Abdulnazar A; IMI, Medical University of Graz, Austria.
  • Kreuzthaler M; IMI, Medical University of Graz, Austria.
Stud Health Technol Inform ; 302: 837-838, 2023 May 18.
Article em En | MEDLINE | ID: mdl-37203513
A large clinical diagnosis list is explored with the goal to cluster syntactic variants. A string similarity heuristic is compared with a deep learning-based approach. Levenshtein distance (LD) applied to common words only (not tolerating deviations in acronyms and tokens with numerals), together with pair-wise substring expansions raised F1 to 13% above baseline (plain LD), with a maximum F1 of 0.71. In contrast, the model-based approach trained on a German medical language model did not perform better than the baseline, not exceeding an F1 value of 0.42.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 1_ASSA2030 Base de dados: MEDLINE Assunto principal: Processamento de Linguagem Natural / Idioma Tipo de estudo: Diagnostic_studies / Prognostic_studies Idioma: En Revista: Stud Health Technol Inform Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 1_ASSA2030 Base de dados: MEDLINE Assunto principal: Processamento de Linguagem Natural / Idioma Tipo de estudo: Diagnostic_studies / Prognostic_studies Idioma: En Revista: Stud Health Technol Inform Ano de publicação: 2023 Tipo de documento: Article