Your browser doesn't support javascript.
loading
Crystallinity and Phase Control in Formamidinium-Based Dion-Jacobson 2D Perovskite via Seed-Induced Growth for Efficient Photovoltaics.
Wu, Guangbao; Liu, Tanghao; Hu, Mengxiao; Zhang, Zhipeng; Li, Shilin; Xiao, Linge; Guo, Jia; Wang, Yueyang; Zhu, Annan; Li, Wang; Zhou, Huiqiong; Zhang, Yuan; Chen, Runfeng; Xing, Guichuan.
Afiliação
  • Wu G; State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
  • Liu T; Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China.
  • Hu M; State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
  • Zhang Z; Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China.
  • Li S; School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China.
  • Xiao L; CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing, Beijing, 100190, China.
  • Guo J; Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China.
  • Wang Y; Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China.
  • Zhu A; Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China.
  • Li W; Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China.
  • Zhou H; CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing, Beijing, 100190, China.
  • Zhang Y; School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China.
  • Chen R; State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
  • Xing G; Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China.
Adv Mater ; 35(36): e2303061, 2023 Sep.
Article em En | MEDLINE | ID: mdl-37235878
ABSTRACT
2D perovskites based on Formamidinium (FA) hold the potential for excellent stability and a broad absorption range, making them attractive materials for solar cells. However, FA-based 2D perovskites produced via one-step processing exhibit poor crystallinity and random quasi-quantum wells (QWs), leading to subpar photovoltaic performance. In this study, a seed-induced growth approach is introduced employing MAPbCl3 and BDAPbI4 in the deposition of FA-based Dion-Jacobson 2D perovskite films. This method yields high-quality perovskite films as the seeds preferentially precipitate and serve as templates for the epitaxial growth of FA-based counterparts, effectively suppressing the δ phase. Moreover, the epitaxial growth facilitated by uniformly dispersed seeds results in simultaneous crystallization from top to bottom, efficiently mitigating random phases (n = 2, 3, 4…) induced by the diffusion of organic cations and, in turn, minimizing energy loss. The impact of seed-induced growth on the crystallization and phase distribution of FA-based 2D perovskites is systematically investigated. As a result, the optimized FA-based 2D perovskite solar cell delivers an outstanding efficiency of 20.0%, accompanied by a remarkable fill factor of 0.823. Additionally, the unencapsulated device demonstrates exceptional stability, maintaining 98% of its initial efficiency after 1344 h of storage.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Mater Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Mater Ano de publicação: 2023 Tipo de documento: Article