Your browser doesn't support javascript.
loading
Next Generation Sequencing (NGS) Target Approach for Undiagnosed Dysglycaemia.
Aloi, Concetta; Salina, Alessandro; Caroli, Francesco; Bocciardi, Renata; Tappino, Barbara; Bassi, Marta; Minuto, Nicola; d'Annunzio, Giuseppe; Maghnie, Mohamad.
Afiliação
  • Aloi C; LABSIEM (Laboratory for the Study of Inborn Errors of Metabolism), IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy.
  • Salina A; LABSIEM (Laboratory for the Study of Inborn Errors of Metabolism), IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy.
  • Caroli F; UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy.
  • Bocciardi R; UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy.
  • Tappino B; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16100 Genoa, Italy.
  • Bassi M; LABSIEM (Laboratory for the Study of Inborn Errors of Metabolism), IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy.
  • Minuto N; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16100 Genoa, Italy.
  • d'Annunzio G; Department of Pediatrics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy.
  • Maghnie M; Department of Pediatrics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy.
Life (Basel) ; 13(5)2023 Apr 24.
Article em En | MEDLINE | ID: mdl-37240725
ABSTRACT
Next-generation sequencing (NGS) has revolutionized the field of genomics and created new opportunities for basic research. We described the strategy for the NGS validation of the "dysglycaemia panel" composed by 44 genes related to glucose metabolism disorders (MODY, Wolfram syndrome) and familial renal glycosuria using Ion AmpliSeq technology combined with Ion-PGM. Anonymized DNA of 32 previously genotyped cases with 33 different variants were used to optimize the methodology. Standard protocol was used to generate the primer design, library, template preparation, and sequencing. Ion Reporter tool was used for data analysis. In all the runs, the mean coverage was over 200×. Twenty-nine out of thirty three variants (96.5%) were detected; four frameshift variants were missed. All point mutations were detected with high sensitivity. We identified three further variants of unknown significance in addition to pathogenic mutations previously identified by Sanger sequencing. The NGS panel allowed us to identify pathogenic variants in multiple genes in a short time. This could help to identify several defects in children and young adults that have to receive the genetic diagnosis necessary for optimal treatment. In order not to lose any pathogenic variants, Sanger sequencing is included in our analytical protocol to avoid missing frameshift variants.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Guideline Idioma: En Revista: Life (Basel) Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Guideline Idioma: En Revista: Life (Basel) Ano de publicação: 2023 Tipo de documento: Article