Your browser doesn't support javascript.
loading
Discovery of highly immunogenic spleen-resident FCGR3+CD103+ cDC1s differentiated by IL-33-primed ST2+ basophils.
Kang, Myeong-Ho; Hong, JungHyub; Lee, Jinjoo; Cha, Min-Suk; Lee, Sangho; Kim, Hye-Young; Ha, Sang-Jun; Lim, Yong Taik; Bae, Yong-Soo.
Afiliação
  • Kang MH; Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
  • Hong J; Center for Immune Research on Non-Lymphoid Organs, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyounggi-do, 16419, Republic of Korea.
  • Lee J; Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
  • Cha MS; Center for Immune Research on Non-Lymphoid Organs, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyounggi-do, 16419, Republic of Korea.
  • Lee S; Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
  • Kim HY; Center for Immune Research on Non-Lymphoid Organs, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyounggi-do, 16419, Republic of Korea.
  • Ha SJ; Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
  • Lim YT; Center for Immune Research on Non-Lymphoid Organs, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyounggi-do, 16419, Republic of Korea.
  • Bae YS; Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
Cell Mol Immunol ; 20(7): 820-834, 2023 07.
Article em En | MEDLINE | ID: mdl-37246159
ABSTRACT
Recombinant interleukin-33 (IL-33) inhibits tumor growth, but the detailed immunological mechanism is still unknown. IL-33-mediated tumor suppression did not occur in Batf3-/- mice, indicating that conventional type 1 dendritic cells (cDC1s) play a key role in IL-33-mediated antitumor immunity. A population of CD103+ cDC1s, which were barely detectable in the spleens of normal mice, increased significantly in the spleens of IL-33-treated mice. The newly emerged splenic CD103+ cDC1s were distinct from conventional splenic cDC1s based on their spleen residency, robust effector T-cell priming ability, and surface expression of FCGR3. DCs and DC precursors did not express Suppressor of Tumorigenicity 2 (ST2). However, recombinant IL-33 induced spleen-resident FCGR3+CD103+ cDC1s, which were found to be differentiated from DC precursors by bystander ST2+ immune cells. Through immune cell fractionation and depletion assays, we found that IL-33-primed ST2+ basophils play a crucial role in the development of FCGR3+CD103+ cDC1s by secreting IL-33-driven extrinsic factors. Recombinant GM-CSF also induced the population of CD103+ cDC1s, but the population neither expressed FCGR3 nor induced any discernable antitumor immunity. The population of FCGR3+CD103+ cDC1s was also generated in vitro culture of Flt3L-mediated bone marrow-derived DCs (FL-BMDCs) when IL-33 was added in a pre-DC stage of culture. FL-BMDCs generated in the presence of IL-33 (FL-33-DCs) offered more potent tumor immunotherapy than control Flt3L-BMDCs (FL-DCs). Human monocyte-derived DCs were also more immunogenic when exposed to IL-33-induced factors. Our findings suggest that recombinant IL-33 or an IL-33-mediated DC vaccine could be an attractive protocol for better tumor immunotherapy.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Interleucina-33 / Neoplasias Limite: Animals / Humans Idioma: En Revista: Cell Mol Immunol Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Interleucina-33 / Neoplasias Limite: Animals / Humans Idioma: En Revista: Cell Mol Immunol Ano de publicação: 2023 Tipo de documento: Article