Your browser doesn't support javascript.
loading
Dynamics of Chronic Liver Injury in Experimental Models of Hepatotoxicity.
Czekaj, Piotr; Król, Mateusz; Kolanko, Emanuel; Limanówka, Lukasz; Prusek, Agnieszka; Skubis-Sikora, Aleksandra; Bogunia, Edyta; Sikora, Bartosz; Hermyt, Mateusz; Michalik, Marcin; Grajoszek, Aniela; Pajak, Jacek.
Afiliação
  • Czekaj P; Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland.
  • Król M; Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland.
  • Kolanko E; Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland.
  • Limanówka L; Students Scientific Society, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland.
  • Prusek A; Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland.
  • Skubis-Sikora A; Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland.
  • Bogunia E; Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland.
  • Sikora B; Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland.
  • Hermyt M; Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland.
  • Michalik M; Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland.
  • Grajoszek A; Department of Experimental Medicine, Medical University of Silesia in Katowice, 40-752 Katowice, Poland.
  • Pajak J; Department of Pathomorphology and Molecular Diagnostic, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland.
Front Biosci (Landmark Ed) ; 28(5): 87, 2023 05 09.
Article em En | MEDLINE | ID: mdl-37258482
BACKGROUND: In humans, chronic liver disease (CLD) is a serious clinical condition with many life-threatening complications. Currently, there is no therapy to stop or slow down the progression of liver fibrosis. Experimental mouse models of CLD, induced by repeated intraperitoneal injections of carbon tetrachloride (CCL4) and D-galactosamine (D-GalN), can be used to evaluate therapies that cannot be performed in humans. A major drawback of these animal models is the different dynamics of liver fibrosis progression depending on the animal strain, administered hepatotoxin, its dose, duration of intoxication, and frequency of injections. The aim of this study was to describe and compare the dynamics of progression of pathological changes in the BALB/c mouse and Sprague Dawley rat models of CLD induced by CCl4 and D-GalN. We defined the onset and duration of these changes and suggested the optimal time for therapeutic intervention in the analyzed CLD models. METHODS: CLD was induced by repeated intraperitoneal injection of CCl4 in mice (12.5 µL/100 g bw every 5 days) and rats (25-100 µL/100 g bw twice a week) and D-GalN in mice (75 mg/100 g bw twice a week) and rats (25 mg/100 g bw twice a week). Blood and liver samples were collected at weeks 2, 4, 6, 8, 10, and 12 of intoxication. Liver injury and its progression were assessed by using complete blood count and liver function blood tests as well as by analyzing histopathological changes, including fibrosis, proliferation activity, apoptosis, stellate cell activation, and gene expression. RESULTS: In mice and rats treated with CCl4, early fibrosis was observed in most pericentral areas from week 2 to 4 of intoxication. Established fibrosis developed in both rats and mice at week 6 of intoxication. Incomplete cirrhosis, defined as the presence of occasional cirrhotic nodules, was observed in rats at week 12 of intoxication. The dynamics of liver fibrosis in CCl4-treated animals were greater than in the D-GalN groups. In D-GalN-intoxicated rats and mice, the first signs of liver fibrosis were observed at weeks 4 and 10 of intoxication, respectively. The rats developed early fibrosis after 8 weeks of D-GalN intoxication. The progression of collagen deposition was accompanied by histological changes and alteration of certain genes and blood liver parameters. CONCLUSIONS: The dynamics of liver fibrosis in CCl4 treated rodents is greater than in the D-GalN treated ones. In the CCl4 models, two appropriate times for therapeutic intervention are indicated, which to varying degrees reflect the real clinical situation and may potentially differ in the obtained results: early intervention before week 4 of intoxication (early fibrosis) and late intervention after week 8 of intoxication (when signs of established fibrosis are present). Rodent models of D-GalN-induced fibrosis are not recommended due to the long incubation period and weak toxic effect.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença Hepática Induzida por Substâncias e Drogas / Fígado Limite: Animals / Humans Idioma: En Revista: Front Biosci (Landmark Ed) Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença Hepática Induzida por Substâncias e Drogas / Fígado Limite: Animals / Humans Idioma: En Revista: Front Biosci (Landmark Ed) Ano de publicação: 2023 Tipo de documento: Article