Digital diaphanoscopy of maxillary sinus pathologies supported by machine learning.
J Biophotonics
; 16(9): e202300138, 2023 09.
Article
em En
| MEDLINE
| ID: mdl-37272252
Maxillary sinus pathologies remain among the most common ENT diseases requiring timely diagnosis for successful treatment. Standard ENT inspection approaches indicate low sensitivity in detecting maxillary sinus pathologies. In this paper, we report on capabilities of digital diaphanoscopy combined with machine learning tools in the detection of such pathologies. We provide a comparative analysis of two machine learning approaches applied to digital diapahnoscopy data, namely, convolutional neural networks and linear discriminant analysis. The sensitivity and specificity values obtained for both employed approaches exceed the reported accuracy indicators for traditional screening diagnosis methods (such as nasal endoscopy or ultrasound), suggesting the prospects of their usage for screening maxillary sinuses alterations. The analysis of the obtained values showed that the linear discriminant analysis, being a simpler approach as compared to neural networks, allows one to detect the maxillary sinus pathologies with the sensitivity and specificity of 0.88 and 0.98, respectively.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Transiluminação
/
Seio Maxilar
Idioma:
En
Revista:
J Biophotonics
Ano de publicação:
2023
Tipo de documento:
Article