Your browser doesn't support javascript.
loading
The Metabolic Profile of Young, Watered Chickpea Plants Can Be Used as a Biomarker to Predict Seed Number under Terminal Drought.
Purdy, Sarah J; Fuentes, David; Ramamoorthy, Purushothaman; Nunn, Christopher; Kaiser, Brent N; Merchant, Andrew.
Afiliação
  • Purdy SJ; New South Wales Department of Primary Industries, 4 Marsden Park Road, Calala, NSW 2340, Australia.
  • Fuentes D; Charles Perkins Centre, Sydney Mass Spectrometry, The University of Sydney, John Hopkins Drive, Sydney, NSW 2000, Australia.
  • Ramamoorthy P; Plant Breeding Institute, Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney, 12656 Newell Hwy, Narrabri, NSW 2390, Australia.
  • Nunn C; CSIRO Agriculture and Food, Australian Cotton Research Institute, 21888 Kamilaroi Hwy, Narrabri, NSW 2390, Australia.
  • Kaiser BN; Sydney Institute of Agriculture, The University of Sydney, 380 Werombi Road, Sydney, NSW 2006, Australia.
  • Merchant A; The School of Life, Earth and Environmental Science, The University of Sydney, 380 Werombi Road, Sydney, NSW 2006, Australia.
Plants (Basel) ; 12(11)2023 May 30.
Article em En | MEDLINE | ID: mdl-37299151
Chickpea is the second-most-cultivated legume globally, with India and Australia being the two largest producers. In both of these locations, the crop is sown on residual summer soil moisture and left to grow on progressively depleting water content, finally maturing under terminal drought conditions. The metabolic profile of plants is commonly, correlatively associated with performance or stress responses, e.g., the accumulation of osmoprotective metabolites during cold stress. In animals and humans, metabolites are also prognostically used to predict the likelihood of an event (usually a disease) before it occurs, e.g., blood cholesterol and heart disease. We sought to discover metabolic biomarkers in chickpea that could be used to predict grain yield traits under terminal drought, from the leaf tissue of young, watered, healthy plants. The metabolic profile (GC-MS and enzyme assays) of field-grown chickpea leaves was analysed over two growing seasons, and then predictive modelling was applied to associate the most strongly correlated metabolites with the final seed number plant-1. Pinitol (negatively), sucrose (negatively) and GABA (positively) were significantly correlated with seed number in both years of study. The feature selection algorithm of the model selected a larger range of metabolites including carbohydrates, sugar alcohols and GABA. The correlation between the predicted seed number and actual seed number was R2 adj = 0.62, demonstrating that the metabolic profile could be used to predict a complex trait with a high degree of accuracy. A previously unknown association between D-pinitol and hundred-kernel weight was also discovered and may provide a single metabolic marker with which to predict large seeded chickpea varieties from new crosses. The use of metabolic biomarkers could be used by breeders to identify superior-performing genotypes before maturity is reached.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Plants (Basel) Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Plants (Basel) Ano de publicação: 2023 Tipo de documento: Article