Your browser doesn't support javascript.
loading
Multifunctional nanoparticles precisely reprogram the tumor microenvironment and potentiate antitumor immunotherapy after near-infrared-II light-mediated photothermal therapy.
Ge, Yanni; Zhang, Jiaojiao; Jin, Kai; Ye, Ziqiang; Wang, Wei; Zhou, Zhuxian; Ye, Juan.
Afiliação
  • Ge Y; Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China.
  • Zhang J; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
  • Jin K; Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China.
  • Ye Z; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
  • Wang W; Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China; Zhejiang Key
  • Zhou Z; Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China; Zhejiang Key
  • Ye J; Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China. Electronic ad
Acta Biomater ; 167: 551-563, 2023 09 01.
Article em En | MEDLINE | ID: mdl-37302731
ABSTRACT
Mild-temperature photothermal therapy (mild PTT) is a safe and efficient antitumor therapy. However, mild PTT alone usually fails to activate the immune response and prevent tumor metastasis. Herein, a photothermal agent, copper sulfide@ovalbumin (CuS@OVA), with an effective PTT effect in the second near-infrared (NIR-II) window, is developed. CuS@OVA can optimize the tumor microenvironment (TME) and evoke an adaptive immune response. Copper ions are released in the acidic TME to promote the M1 polarization of tumor-associated macrophages. The model antigen OVA not only acts as a scaffold for nanoparticle growth but also promotes the maturation of dendritic cells, which primes naive T cells to stimulate adaptive immunity. CuS@OVA augments the antitumor efficiency of the immune checkpoint blockade (ICB) in vivo, which suppresses tumor growth and metastasis in a mouse melanoma model. The proposed therapeutic platform, CuS@OVA nanoparticles, may be a potential adjuvant for optimizing the TME and improving the efficiency of ICB as well as other antitumor immunotherapies. STATEMENT OF

SIGNIFICANCE:

Mild-temperature photothermal therapy (mild PTT) is a safe and efficient antitumor therapy, but usually fails to activate the immune response and prevent tumor metastasis. Herein, we develop a photothermal agent, copper sulfide@ovalbumin (CuS@OVA), with an excellent PTT effect in the second near-infrared (NIR-II) window. CuS@OVA can optimize the tumor microenvironment (TME) and evoke an adaptive immune response by promoting the M1 polarization of tumor-associated macrophages and the maturation of dendritic cells. CuS@OVA augments the antitumor efficiency of the immune checkpoint blockade (ICB) in vivo, suppressing tumor growth and metastasis. The platform may be a potential adjuvant for optimizing the TME and improving the efficiency of ICB as well as other antitumor immunotherapies.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanopartículas / Nanopartículas Multifuncionais / Hipertermia Induzida / Neoplasias Limite: Animals Idioma: En Revista: Acta Biomater Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanopartículas / Nanopartículas Multifuncionais / Hipertermia Induzida / Neoplasias Limite: Animals Idioma: En Revista: Acta Biomater Ano de publicação: 2023 Tipo de documento: Article