Your browser doesn't support javascript.
loading
Spectro-Microscopic Perceptions into Oxidation Behavior of Large-Scale Molybdenum Disulfide and its Photoelectrical Correlation.
Kwon, Yeong Min; Lim, Yi Rang; Bae, Garam; Song, Da Som; Jo, Hyeong-Ku; Park, Se Yeon; Jang, Moonjeong; Yim, Soonmin; Myung, Sung; Lim, Jongsun; Lee, Sun Sook; Song, Wooseok.
Afiliação
  • Kwon YM; Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea.
  • Lim YR; Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea.
  • Bae G; Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea.
  • Song DS; Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea.
  • Jo HK; Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea.
  • Park SY; Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea.
  • Jang M; Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea.
  • Yim S; Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea.
  • Myung S; Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea.
  • Lim J; Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea.
  • Lee SS; Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea.
  • Song W; Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea.
Small Methods ; 7(10): e2300147, 2023 Oct.
Article em En | MEDLINE | ID: mdl-37317009
ABSTRACT
Despite the encouraging properties and research of 2D MoS2 , an ongoing issue associated with the oxidative instability remains elusive for practical optoelectronic applications. Thus, in-depth understanding of the oxidation behavior of large-scale and homogeneous 2D MoS2 is imperative. Here the structural and chemical transformations of large-area MoS2 multilayers by air-annealing with altered temperature and time via combinatorial spectro-microscopic analyses (Raman spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy) are surveyed. The results gave indications pertaining to temperature- and time-dependent oxidation effects i) heat-driven elimination of redundant residues, ii) internal strain stimulated by the formation of MoO bonds, iii) deterioration of the MoS2 crystallinity, iv) layer thinning, and v) morphological transformation from 2D MoS2 layers to particles. Photoelectrical characterization of the air-annealed MoS2 is implemented to capture the link between the oxidation behavior of MoS2 multilayers and their photoelectrical properties. The photocurrent based on MoS2 air-annealed at 200 °C is assessed to be 4.92 µA, which is 1.73 times higher than that of pristine MoS2 (2.84 µA). The diminution in the photocurrent of the photodetector based on MoS2 air-annealed above 300 °C in terms of the structural, chemical, and electrical conversions induced by the oxidation process is further discussed.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Qualitative_research Idioma: En Revista: Small Methods Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Qualitative_research Idioma: En Revista: Small Methods Ano de publicação: 2023 Tipo de documento: Article