Segmentation of paracentral acute middle maculopathy lesions in spectral-domain optical coherence tomography images through weakly supervised deep convolutional networks.
Comput Methods Programs Biomed
; 240: 107632, 2023 Oct.
Article
em En
| MEDLINE
| ID: mdl-37329802
BACKGROUND AND OBJECTIVES: Spectral-domain optical coherence tomography (SD-OCT) is a valuable tool for non-invasive imaging of the retina, allowing the discovery and visualization of localized lesions, the presence of which is associated with eye diseases. The present study introduces X-Net, a weakly supervised deep-learning framework for automated segmentation of paracentral acute middle maculopathy (PAMM) lesions in retinal SD-OCT images. Despite recent advances in the development of automatic methods for clinical analysis of OCT scans, there remains a scarcity of studies focusing on the automated detection of small retinal focal lesions. Additionally, most existing solutions depend on supervised learning, which can be time-consuming and require extensive image labeling, whereas X-Net offers a solution to these challenges. As far as we can determine, no prior study has addressed the segmentation of PAMM lesions in SD-OCT images. METHODS: This study leverages 133 SD-OCT retinal images, each containing instances of paracentral acute middle maculopathy lesions. A team of eye experts annotated the PAMM lesions in these images using bounding boxes. Then, labeled data were used to train a U-Net that performs pre-segmentation, producing region labels of pixel-level accuracy. To attain a highly-accurate final segmentation, we introduced X-Net, a novel neural network made up of a master and a slave U-Net. During training, it takes the expert annotated, and pixel-level pre-segment annotated images and employs sophisticated strategies to ensure the highest segmentation accuracy. RESULTS: The proposed method was rigorously evaluated on clinical retinal images excluded from training and achieved an accuracy of 99% with a high level of similarity between the automatic segmentation and expert annotation, as demonstrated by a mean Intersection-over-Union of 0.8. Alternative methods were tested on the same data. Single-stage neural networks proved insufficient for achieving satisfactory results, confirming that more advanced solutions, such as the proposed method, are necessary. We also found that X-Net using Attention U-net for both the pre-segmentation and X-Net arms for the final segmentation shows comparable performance to the proposed method, suggesting that the proposed approach remains a viable solution even when implemented with variants of the classic U-Net. CONCLUSIONS: The proposed method exhibits reasonably high performance, validated through quantitative and qualitative evaluations. Medical eye specialists have also verified its validity and accuracy. Thus, it could be a viable tool in the clinical assessment of the retina. Additionally, the demonstrated approach for annotating the training set has proven to be effective in reducing the expert workload.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Doenças Retinianas
/
Degeneração Macular
Tipo de estudo:
Qualitative_research
Limite:
Humans
Idioma:
En
Revista:
Comput Methods Programs Biomed
Ano de publicação:
2023
Tipo de documento:
Article