Partial least squares enhance multi-trait genomic prediction of potato cultivars in new environments.
Sci Rep
; 13(1): 9947, 2023 06 19.
Article
em En
| MEDLINE
| ID: mdl-37336933
It is of paramount importance in plant breeding to have methods dealing with large numbers of predictor variables and few sample observations, as well as efficient methods for dealing with high correlation in predictors and measured traits. This paper explores in terms of prediction performance the partial least squares (PLS) method under single-trait (ST) and multi-trait (MT) prediction of potato traits. The first prediction was for tested lines in tested environments under a five-fold cross-validation (5FCV) strategy and the second prediction was for tested lines in untested environments (herein denoted as leave one environment out cross validation, LOEO). There was a good performance in terms of predictions (with accuracy mostly > 0.5 for Pearson's correlation) the accuracy of 5FCV was better than LOEO. Hence, we have empirical evidence that the ST and MT PLS framework is a very valuable tool for prediction in the context of potato breeding data.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Solanum tuberosum
Tipo de estudo:
Prognostic_studies
/
Risk_factors_studies
Idioma:
En
Revista:
Sci Rep
Ano de publicação:
2023
Tipo de documento:
Article