Nanophotonic immunoarray with electrochemically roughened surfaces for handheld detection of secreted PD-L1 to predict immuno-oncology efficacy.
Lab Chip
; 23(15): 3443-3452, 2023 07 25.
Article
em En
| MEDLINE
| ID: mdl-37417778
The analysis of secreted protein biomarkers can be a useful non-invasive method of predicting or monitoring cancer therapeutic response. The increased level of soluble programmed cell death protein ligand 1 (sPD-L1) is a promising predictive biomarker for selecting patients who are likely to respond to immune checkpoint immunotherapy. The current established immunoassay for secreted protein analysis is enzyme-linked immunosorbent assay (ELISA). Yet, ELISA is generally still liable to limited detection sensitivity and restricted to bulky chromogenic readout equipment. Herein, we present a designed nanophotonic immunoarray sensor which achieved sPD-L1 analysis at high-throughput, enhanced detection sensitivity and portability. The key benefits of our nanophotonic immunoarray sensor are (i) high-throughput surface-enhanced Raman scattering (SERS) analysis of multiple samples on a singular platform; (ii) improved sPD-L1 detection sensitivity at 1 pg mL-1 (by two orders of magnitude as compared to ELISA) via electrochemically roughened gold sensor surfaces; (iii) fit for handheld SERS detection with miniaturized equipment footprint. We evaluated the analytical performance of the nanophotonic immunoarray sensor and successfully demonstrated quantitative sPD-L1 detection in a cohort of contrived human plasma samples.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Antígeno B7-H1
/
Neoplasias
Tipo de estudo:
Diagnostic_studies
/
Prognostic_studies
/
Risk_factors_studies
Limite:
Humans
Idioma:
En
Revista:
Lab Chip
Ano de publicação:
2023
Tipo de documento:
Article