Your browser doesn't support javascript.
loading
Real-time fetal brain tracking for functional fetal MRI.
Neves Silva, Sara; Aviles Verdera, Jordina; Tomi-Tricot, Raphael; Neji, Radhouene; Uus, Alena; Grigorescu, Irina; Wilkinson, Thomas; Ozenne, Valery; Lewin, Alexander; Story, Lisa; De Vita, Enrico; Rutherford, Mary; Pushparajah, Kuberan; Hajnal, Jo; Hutter, Jana.
Afiliação
  • Neves Silva S; Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
  • Aviles Verdera J; Biomedical Engineering Department, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
  • Tomi-Tricot R; Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
  • Neji R; Biomedical Engineering Department, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
  • Uus A; Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
  • Grigorescu I; Biomedical Engineering Department, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
  • Wilkinson T; MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK.
  • Ozenne V; Biomedical Engineering Department, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
  • Lewin A; MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK.
  • Story L; Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
  • De Vita E; Biomedical Engineering Department, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
  • Rutherford M; Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
  • Pushparajah K; Biomedical Engineering Department, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
  • Hajnal J; Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
  • Hutter J; Biomedical Engineering Department, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
Magn Reson Med ; 90(6): 2306-2320, 2023 12.
Article em En | MEDLINE | ID: mdl-37465882
ABSTRACT

PURPOSE:

To improve motion robustness of functional fetal MRI scans by developing an intrinsic real-time motion correction method. MRI provides an ideal tool to characterize fetal brain development and growth. It is, however, a relatively slow imaging technique and therefore extremely susceptible to subject motion, particularly in functional MRI experiments acquiring multiple Echo-Planar-Imaging-based repetitions, for example, diffusion MRI or blood-oxygen-level-dependency MRI.

METHODS:

A 3D UNet was trained on 125 fetal datasets to track the fetal brain position in each repetition of the scan in real time. This tracking, inserted into a Gadgetron pipeline on a clinical scanner, allows updating the position of the field of view in a modified echo-planar imaging sequence. The method was evaluated in real-time in controlled-motion phantom experiments and ten fetal MR studies (17 + 4-34 + 3 gestational weeks) at 3T. The localization network was additionally tested retrospectively on 29 low-field (0.55T) datasets.

RESULTS:

Our method achieved real-time fetal head tracking and prospective correction of the acquisition geometry. Localization performance achieved Dice scores of 84.4% and 82.3%, respectively for both the unseen 1.5T/3T and 0.55T fetal data, with values higher for cephalic fetuses and increasing with gestational age.

CONCLUSIONS:

Our technique was able to follow the fetal brain even for fetuses under 18 weeks GA in real-time at 3T and was successfully applied "offline" to new cohorts on 0.55T. Next, it will be deployed to other modalities such as fetal diffusion MRI and to cohorts of pregnant participants diagnosed with pregnancy complications, for example, pre-eclampsia and congenital heart disease.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Imageamento por Ressonância Magnética / Feto Tipo de estudo: Observational_studies Limite: Female / Humans / Pregnancy Idioma: En Revista: Magn Reson Med Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Imageamento por Ressonância Magnética / Feto Tipo de estudo: Observational_studies Limite: Female / Humans / Pregnancy Idioma: En Revista: Magn Reson Med Ano de publicação: 2023 Tipo de documento: Article