Your browser doesn't support javascript.
loading
Synchronization between Attractors: Genomic Mechanism of Cell-Fate Change.
Tsuchiya, Masa; Brazhnik, Paul; Bizzarri, Mariano; Giuliani, Alessandro.
Afiliação
  • Tsuchiya M; SEIKO Life Science Laboratory, SEIKO Research Institute for Education, Osaka 540-6591, Japan.
  • Brazhnik P; Academy of Integrated Science, Virginia Tech, Blacksburg, VA 24061, USA.
  • Bizzarri M; Systems Biology Group, Department of Experimental Medicine, University La Sapienza, 00163 Roma, Italy.
  • Giuliani A; Environment and Health Department, Istituto Superiore di Sanitá, 00161 Rome, Italy.
Int J Mol Sci ; 24(14)2023 Jul 18.
Article em En | MEDLINE | ID: mdl-37511359
ABSTRACT
Herein, we provide a brief overview of complex systems theory approaches to investigate the genomic mechanism of cell-fate changes. Cell trajectories across the epigenetic landscape, whether in development, environmental responses, or disease progression, are controlled by extensively coordinated genome-wide gene expression changes. The elucidation of the mechanisms underlying these coherent expression changes is of fundamental importance in cell biology and for paving the road to new therapeutic approaches. In previous studies, we pointed at dynamic criticality as a plausible characteristic of genome-wide transition dynamics guiding cell fate. Whole-genome expression develops an engine-like organization (genome engine) in order to establish an autonomous dynamical system, capable of both homeostasis and transition behaviors. A critical set of genes behaves as a critical point (CP) that serves as the organizing center of cell-fate change. When the system is pushed away from homeostasis, the state change that occurs at the CP makes local perturbation spread over the genome, demonstrating self-organized critical (SOC) control of genome expression. Oscillating-Mode genes (which normally keep genome expression on pace with microenvironment fluctuations), when in the presence of an effective perturbative stimulus, drive the dynamics of synchronization, and thus guide the cell-fate transition.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Genoma / Genômica Tipo de estudo: Prognostic_studies Idioma: En Revista: Int J Mol Sci Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Genoma / Genômica Tipo de estudo: Prognostic_studies Idioma: En Revista: Int J Mol Sci Ano de publicação: 2023 Tipo de documento: Article